
11 Integral Transforms 

Many pairs of functions F{k) and f(x) can be related by expressions of 
the form 

poo 

F(k)= / f(x)K(k,x)dx, (1) 

where the function K{k,x) is known as the kernel. The function F(k) is 
called the integral transform of the function fix) by the kernel K{k,x). The 
operation described by Eq. (1) is sometimes referred to as the mapping of 
the function f{x) in x space into another function F{k) in k space. It is 
important to note that the variables x and k have reciprocal dimensions. Thus, 
for example if x has dimensions of frequency, k has dimensions of time in 
this case. Similarly, if x is a distance, say, in a crystal, k is a "distance" in 
the reciprocal lattice (see Section 4.6). 

11.1 THE FOURIER TRANSFORM 

By far the most useful integral transform in chemistry and physics is that of 
Fourier, viz. 

/
oo 

f(x)e^"'''dx, (2) 
-00 

where / = > / ^ . Here, the kernel is complex, as given by Eulers's relation 
[Eq. (1-32)]. As any function of a real variable can be expressed as the sum 
of even and odd functions, viz. 

fix) = /even(-^) + /odd(-^), (3) 

where /even(^) = /even(-.^) and foddix) = -foddi-x), Eq. (2) becomes 

= / fQy,cnix)cosi27Tkx)dx-\-i 
J—oo J -

Fik)= I fQy^enix)cosi27tkx)dx-\-i I fo^dix)sini2nkx)dx (4) 
«/—oo J—oo 

and Fik) is complex. Clearly, as the functions sine and cosine are used to 
describe wave phenomena, Eq. (4) is employed in their analyses. 
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Other integral transforms are obtained with the use of the kernels e~^^ 
or jc^~\ among the infinite number of possibilities. The former yields the 
Laplace transform, which is of particular importance in the analysis of elec­
trical circuits and the solution of certain differential equations. The latter was 
already introduced in the discussion of the gamma function (Section 5.5.4). 

It is assumed that a given Fourier-transform operation, represented by 

F{k)=.9^f{x). (5) 

possesses an inverse such that 

f^jc)=.^-'F{k). (6) 

Two functions that are related by Eqs. (5) and (6) are known as a transform 
pair. Thus, for example, the inverse of Eq. (2) is given by 

-f fix) = / F{k)e-''"'''' dk, (7) 
J —OO 

which is also a Fourier transform. It should be noted that a Fourier transform 
and its inverse, as defined here, are symmetrical - aside from the differing 
signs in the exponents.* 

11.1.1 Convolution 

The Fourier transform of the product of two functions is given by 

/

OO 

f(x)gix)e"'"'' dx. (8) 
-OO 

The Fourier transform of f(x) can be written as 

/

OO 

fix)e^''''"' dx, (9) 
-OO 

and its inverse as 

f(x)= / F(h)e-^'''^'dh. (10) 
J —OO 

The substitution of Eq. (10) in Eq. (8) yields the relation 

r»oo /»oo 

/

OO /»0< 

/ F(/z)g(x)e'"'*''-'"-'d/zdjc. (11) 
-OO J — OO 

*If the factor ITT is not included in the exponents, its inverse will appear as a factor before 
either integral. 
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By reversing the order of integration in Eq. (11) 

F(h) / g(x)e^'"^''-''^''dx dh (12) 
-OO J —OO 

and it is apparent that the inner integral is just the Fourier transform ^g(x) = 
G(k-h). Thus, 

/

OO 

F{h)G{k -h)dh = F(k)i(Gik). (13) 
-00 

The star in Eq. (13) specifies the convolution operation. This operation arises 
in many branches of physics, chemistry and engineering. It is sometimes 
referred to as "scanning" or "smoothing". In general the convolution of one 
function with another is carried out by accumulating the result of succes­
sively displacing one function with respect to the other along the abscissa. 
Examples of the application of this principle are described later in this chapter. 
Numerical methods of evaluating the convolution operation are summarized 
in Chapter 13. 

It is appropriate to note here that convolution is commutative, viz. 

F{k)irGik) = Gik)irF{k) (14) 

(problem 1). Furthermore, it is associative, as 

F{k)MG{k)irH(k)] = [F(k)irGik)]irHik) (15) 

and distributive under addition, with 

F{k)MG(k) + H(k)] = F(k)irG(k) + F{k)i^H{k). (16) 

A particular case of convolution is that of a function with itself. From 
Eq. (13) this self-convolution can be expressed by 

poo 
F{k)-kF{k)= / F{h)F(k-h)dh. (17) 

It can be considered to represent the cumulative effect of scanning the function 
F(k) over itself. 

11.1.2 Fourier transform pairs 

In the following sections the most important, and relatively simple, transform 
pairs will be described. They have been chosen, as they represent those that are 
routinely applied in physical chemistry. Specifically, they are the functions that 
form the basis of the Fourier-transform techniques that are currently employed 
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in virtually all areas of atomic and molecular spectroscopy. These functions 
are all even, or can be made so, thus their Fourier transforms are real. 

The function '"boxcar"" 

Consider the rectangular function shown in Fig. 1. It is a function that is 
equal to zero outside the region defined by the limits —I and -\-i. However, 
within this region it has a constant value, determined by the condition that the 
integral over the function is equal to unity. That is to say, the function has 
been normalized. The rectangular function \~l(x/2i) is often referred to as 
the "boxcar". 

The Fourier transform of the normalized boxcar function can be obtained 
as follows. With fix) = (l/2i) n(x/2l), Eq. (2) can be written in the form 

^[(l/2i) n(x/2i)] 

1 /•* 
— - I cosCln 

n{x/2i)cos(2nkx)dx (18) 

kx)dx, (19) 

as the integrand in Eq. (18) is an even function of x. The result given by 
Eq. (19) leads to 

^(1 /2^) n(jc/2£) 
sin{27xki) 

2nU 
= smc(27tkl) (20) 

(problem 2). This Fourier transform pair is illustrated in Fig. 1. 
The sharp cutoff at the limits —i and I, as illustrated by the boxcar function, 

often occurs in the frequency domain. In this case the boxcar acts as a low-
pass filter in applications in electronics. All frequencies below \i\ are unaltered, 
while in this ideal case all higher ones are suppressed. 

(mi)nix/2i) 

ji_ 

sine {Intk) 

mt 
^ = = ^ 

0 t 

Fig. 1 The function boxcar and its Fourier transform, sine. 



11. INTEGRAL TRANSFORMS 275 

The function triangle 

This function can be defined by 

0, |jc| > I 
l-\x/i\, \x\<l ' 

(21) 

It is plotted with the appropriate normahzing factor in Fig. 2. The Fourier 
transform of this function can be evaluated as 

I r^ 2 C^ / x\ 
- / A(x/l) cos{2nkx) dx = - 11 - - ) cos{2nkx) dx (22) 
^ J-OQ ^ Jo ^ ^' 

(problem 3). 

sine (nkl) (23) 

sinc^(7ik£) 
\~ 1 

- l o t 

Fig. 2 The triangle function and its Fourier transform, sinc^. 

The Fourier transform of the triangle, as given by Eq. (23), is then 

(l/l)^ A (x/i) = sinc^iTtke), (24) 

as shown in Fig. 2. From this result it is apparent that the triangle function is 
the result of the self-convolution of two boxcars. A well-known example in 
optics is provided by a monochromator in which the image of the rectangular 
entrance slit is scanned over a rectangular exit slit. The resulting triangle is 
referred to as the slit function (see problem 4). 

Gauss's function 

The Gaussian function was discussed in Section 3.4.5. When normalized it 
takes the form 

/ , . , = ; % - " - . (25) 
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The Fourier transform of the Gaussian is given by 

F{k) -r,L e "^ cos{2nkx)dx 

-n^k^/a 

(26) 

(27) 

Thus, the function of Gauss is its own Fourier transform, as shown in Fig. 3 
(see problem 5). 

-7T' kr I a 

Fig. 3 The normahzed Gaussian and its Fourier transform, a Gaussian in k space. 

Exponential decay: The Lorentz profile* 

A phenomenon that exhibits an exponential decay - for example, in 
time - results in a Lorentian function in the frequency domain. The Fourier 
transform of the normalized function 

fix) = ?e-̂ l̂  

is given by 

o poo 
F(k) = - ^-^'^1 cos{2nkx) djc 

^ J-oo 

1 + {An^k'^/p^) 

(28) 

(29) 

(30) 

(see problem 6). This function, is sometimes referred to as the function of 
Cauchy. It is, along with the Gaussian [Eq. (25)], often used to describe the 
profile of an observed spectroscopic feature, e.g. the "bandshape". 

There is a fundamental interest in the profiles of spectral bands. As they 
are functions of frequency, it should be clear from the arguments presented 

*Hendrik Antoon Lorentz, Dutch physicist (1853-1928). 
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\+47t^k^/ ^^ 

^ e-^\^\ 

0 0 

Fig. 4 The normalized exponential and its Fourier transform, the Lorentzian. 

above that their Fourier transforms are functions of time. Thus the analyses of 
observed bandshapes provides molecular dynamic information, that is, quan­
titative descriptions of the time evolution of molecular interactions. 

The delta function of Dirac and the "'Shah'' 

The Dirac delta function represents an intense impulse of very short time 
duration. An example is the "hit" of a baseball by the bat. From a mathematical 
point of view this function can be defined by the relations 

8(x)=0, i f j c / 0 

and 

f 8{x)dx = 1. 

(31) 

(32) 

Dirac's 8{x) cannot be considered to be a function in the usual sense. Although 
in principle it can only be written under an integral sign, Eq. (32) can be 
interpreted as a limit, viz. /̂ ^o fZo ^ 2 ^ n(jc/2€)djc. The integrand in this 
expression has unit area. Thus, as ^ -> 0 the function is limited to the region 
near the origin and, as it becomes narrower, its height increases to compensate. 
This property of the delta function is illustrated in Fig. 5. 

21 

Urn ^—^ 

Fig. 5 The delta function as the limit of the boxcar. 
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The Fourier transform of the function 8(x — i) is given by 

/

oo 

8(x-i)cos(2nki)dx. (33) 
-oo 

Therefore, with £ = 0 it is apparent that the Fourier transform of the delta 
function is equal to unity. 

Two properties of the delta function are of particular interest: 

(i) If it is multiplied by a function f(x), its effect is to yield only the value 
of the function at the point where the delta function is nonzero. Thus, 

f(x)8(x-i) = f(i) (34) 

and the function f(x) has been "sampled" at the point x = i. 
(ii) If it is convoluted with the function f(x), it acts as a shifting operator. 

Then, 

/(jc)*(5(jc -0=1 f(x)8(x -x' -t) dx' (35) 
J—oo 

= f(x-i) (36) 

and the function f(x) has been shifted to f(x -1). 
The principle of sampling suggested in the previous paragraph can be gener­

alized in the form 
oo 

(l/£) ^ (x/e) = J2 S(x-nl), (37) 
n = — O O 

where n is an integer. The function Al (x/l) (Hebrew: shah) has been introduced 
to represent the "sampUng comb". Multiplication of a function f(x) by M^ (x/i) 
selects its values at equal intervals, as the spacing i between successive "teeth" 
in the comb is constant. Thus, 

00 

il/i) AA^ (x/i) X fix) = J2 /(«^)- (38) 
n=—oo 

The values of f(x) are only retained at each particular point where x = ni. 
Furthermore, the convolution of a function f{x) with the sampling comb 
results in a function 

oo 

(l/£) ^ U/£)*/(;c) = ^ / (x - nl), (39) 
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which represents the endless repHcation of the original function at equal 
intervals. This relation is the origin of what is known in Fourier-transform 
spectroscopy as "aliasing". 

Like the Gaussian, discussed above, the function shah is its own Fourier 
transform. Thus, 

F(k) 
1 C^ 

<- J-OO 

Six - ni)e^'''^'' dx 
n=-oo 

This relation is illustrated in Fig. 6. 

(l/i) M} (x/i) 4lJ(^^) 

Fig. 6 The relation ^ ( l / € ) Al (x/l) = ^U (ki). 

(40) 

(41) 

(42) 

11.2 THE LAPLACE TRANSFORM 

The Laplace transform can be defined by 

F(s) =rf(t) = / 
Jo 

e-''f(t)dt. (43) 

As such, with integration limits from zero to infinity, it is referred to as a "one­
sided" transform. For simplicity, it will be assumed here that the variable 
s is real and positive. Again, as in the case of the Fourier transform, the 
variables s and t have reciprocal dimensions and the operator,/' is linear (see 
Section 7.1). 

11.2.1 Examples of simple Laplace transforms 

(i) If f(t) = 1, 

1 
r(i) / 

dt = t > 0 (44) 
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( i i ) I f / ( 0 = / ^ ^ > 0 (45) 

noo 1 

^ ( ^ ^ 0 = / e-''e^' dt = . s>k (46) 
Jo s -k 

(iii) From (ii) the relations 

^^(cosh kt) = -r^—7 s > k (47) 
5"^ — A:^ 

and 

k 
^{sinh kt) = -, s > k (48) 

s^ — k^ 

can be easily derived [problem 7; see Eqs. (1-44) and (1-45)]. 

(iv) With the aid of Eqs. (1-46) and (1-47) the corresponding relations for 
the circular functions can be found, viz. 

^(cos kt) = - r ^ s > k (49) 

s^ H-A:^ 

and 

k 
^{sin kt) = s > k (50) 

s^ -\-k^ 
(problem 8). 

poo 
{w)^{t")^ / e-"t"dt (51) 

s > 0, n > —I (52) 

where n is an integer (see Section 5.5.4 for the definition of the gamma 
function). 

(vi) If s is replaced by (s — a) in Eq. (43), the Laplace transform becomes 

POO 

F{s-a)= / e-'^'-^^'fiOdt (53) 
Jo 

= - / V 7 ( 0 ] . (54) 
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This relation can be employed to obtain other Laplace transforms. For example, 
with the use of Eqs. (49) and (50), 

^{e""' cos kt) = s — a 

and 

^^{e""' sin kt) = 

(s - af + k^ 

k 

{s - af + F • 

(55) 

(56) 

Many other Laplace transforms can be derived in this way. Extensive tables 
of Laplace transforms are available and are of routine use, particularly by 
electronics engineers. 

11.2.2 The transform of derivatives 

The Laplace transform of the derivative of a function f(t) is given by 

L df J Jo df 

Integration by parts yields the result 

-T ^]=-/<'> ^s 
/»oo 

Jo 
fit)dt 

^-f{0)+srfit). 

(57) 

(58) 

(59) 

The transforms of higher derivatives can be found by the same method, e.g. 

r dV(0 
df2 

= s^r/it) - sfio) 
dr 

(0) (60) 

(problem 10). 
A simple example of the application of Eq. (60) is provided by the function 

sin kt. As 

and 

r 
'd^ sinkt' 

df2 

U Sin KL ry 
h vjn Irf - — AC Sin Kl 

= -k^^^sinkt 

= s^^sin kt - sin(0) -
d sin kt 

dt 

(61) 

(62) 

(63) 
t=0 
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Then, as (dsin kt/dt)\f^Q = k and sin(0) = 0, 

in agreement with Eq. (50). 

11.2.3 Solution of differential equations 

It should be evident that the expressions for the Laplace transforms of deriva­
tives of functions can facilitate the solution of differential equations. A trivial 
example is that of the classical harmonic oscillator. Its equation of motion is 
given by Eq. (5-33), namely, 

^ + - ^ = 0. (65) 
d r m 

By taking the Laplace transform, this equation becomes 

'd^x r d/2 
+ - r ( j c ) = 0. (66) 

m 

Note that the use of Eq. (60) for the transform of the second derivative includes 
the initial conditions on the solution to the problem. The introduction of the 
initial conditions at this point is to be compared with the procedure employed 
earher (see Section 5.2.2). If the conditions ;c(0) = XQ and dx/dt — 0 are 
applied. 

and 

s'X{s) - sxo + -X(s) = 0 (67) 
m 

Xis) = . . . ^^xo. (68) 

Thus, from Eq. (49) the solution is given by 

x{t) = xo cos (Dot (69) 

where COQ = K/m. 
As a somewhat more complicated example, consider the electrical circuit 

of the damped oscillator shown in Fig. 5-3. The charge q(t) is determined by 
Eq. (5-45), namely, 

^ + i i « + ' , 0 = 0 , ,70, 
dt^ L dt LC 
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where R is the resistance, L the inductance and C the capacitance. The capaci­
tance will be assumed to have an initial charge qo, at which time there is no 
current flowing in the circuit. Thus, the initial conditions are ^(0) = qo and 
(d^/dO(0) = 0. The Laplace transform then yields the relation 

sHX){s) - sqo + Y^sXis) - qo] + ; ^ ^ ( ^ ) = 0- (^D 

Then, 

5̂  -\- s{R/L) -h 1/LC 

and the condition for oscillation is 

1 R^ 
0)]:= r- > 0. (73) 

^ LC 4L2 
This result is equivalent to that derived in Section 5.2.3 for the mechanical 
analog (problem 11). Equation (72) can be written 

s + R/L s + R/2L R/2L 

(74) 
and, with the aid of Eqs. (49) and (50), the solution becomes 

q{t) =qoe~^^^^^ { cos coit -\ sincoit] , (75) 
V 2Lco\ J 

in agreement with Eq. (5-43). Here again, the initial conditions are specified 
at the outset (problem 12). 

11.2.4 Laplace transforms: Convolution and inversion 

The convolution and general properties of the Fourier transform, as presented 
in Section 11.1, are equally appUcable to the Laplace transform. Thus, 

f 
J -a 

F{h)G{k -h)dh = F(k)itG{k), (76) 

where F(k) and G(k) are the Laplace transforms of f(x) and g(x), respectively. 
The inversion of the Laplace transform presents a more difficult problem. 

From a fundamental point of view the inverse of a given Laplace transform is 
known as the Bromwich integral.* Its evaluation is carried out by application 

*Thomas John I'anson Bromwich, EngHsh mathematician (1875-1929). 
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of the theory of residues. As contour integration is not treated in this book, the 
reader is referred to more advanced texts for the explanation of this method. 

In practice, the inverse Laplace transformations are obtained by reference to 
the rather extensive tables that are available. It is sometimes useful to develop 
the function in question in partial fractions, as employed in Section 3.3.3. The 
resulting sum of integrals can often be evaluated with the use of the tables. 

In principle, numerical methods can be employed to evaluate inverse Laplace 
transforms. However, the procedure is subject to errors that are often very 
large-even catastrophic. 

11.2.5 Green's functions* 

The introduction of these somewhat mysterious functions allows certain 
differential equations to be converted into equivalent integral equations. 
Although the method is particularly useful in its application to partial 
differential equations, it will be illustrated here with the aid of a relatively 
simple example, the forced vibrations of a classical oscillator. 

Consider first the inhomogeneous differential equation as given by Eq. (5-
57). For simplicity, assume here that the oscillator is not damped; hence, 
h =0. The problems to be treated are now represented by the differential 
equation 

—-^colx = (P{t). (77) 

The function (j)(t), aside from a constant, expresses the time-dependent force 
acting on the harmonic oscillator and COQ = sj^jm is the angular frequency of 
the system (Section 5.3.3). 

Now consider the external force acting on the system to be composed of a 
series of instantaneous impacts, each of which can be expressed mathemati­
cally by a delta function. The response of the system can then be represented by 
a function G{t). The differential equation to be solved then takes on the form 

d̂  
^ G ( ^ t') + ojlG{t, t') = 8(t - t'). (78) 

The function 8{t — t') corresponds to an impact on the system at the instant 
t = t'. The function G{tj') is known as a Green's function. It has been 
implied here that the forcing function 0(r) can be represented by a sum of 
such delta functions, as given by 

poo 
(f)(t)= / (p(t')8(t -1') dt' t >t' >0 (79) 

Jo 

*George Green, English mathematician (1793-1841). 
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[See Eq. (35) and Eq. (36) with x — i replaced by t]. In effect, the delta 
function samples the forcing function at each point in time. The proof of 
Eq. (79) constitutes problem 13. 

The solution of Eq. (78) can be obtained with the use of the Laplace 
transform. However, it is first necessary to develop the expression for the 
Laplace transform of the delta function, as given on the right-hand side of 
Eq. (78). With the use of the definition of the Laplace transform [Eq. (43)] 
and f{t) = 8(t- t'), the desired result becomes 

^8(t - t') = e-'''. (80) 

The Laplace transform of Eq. (78) can then be written as 

(s^ + col)rG(t. t') =rS(t - t') = e-'\ (81) 

where Eq. (60) has been employed with the initial conditions G(0, 0) = 
G'(0, 0) = 0. Thus, with the use of Eqs. (50) and (54) to obtain the inverse 
Laplace transforms, the solution is given by 

G{tj')=^-
s^ + col 

= — sin[a)o(t - t')] (82) 
COQ 

(see problem 14). This result is easily verified by substitution in Eq. (78). Once 
the Green's function has been found for this type of problem, the solution of 
Eq. (77) for a specific forcing function (p(t') can, at least in principle, be 
obtained by direct integration, namely. 

poo 
x(t)= / G{t,t')(l)(t')dt' 

Jo 
(83) 

(problem 15). Note that Eq. (83) is an integral equation with G(t, t') the 
kernel. 

As a simple example of the general method outlined above, consider 
the vibrations of the harmonic oscillator under the forcing function (f){t') = 
Fosin cot', as in Eq. (5-58). Thus, Eq. (83) becomes 

x{t) = — sin[a)oit - t')] sin cot' dt'. (84) h [ 
OJQ Jo 

This integral can be evaluated with the aid of the appropriate trigonometric 
relations. Furthermore, the upper limit can be replaced by t, as t' < t. The 
result, 

sincoat ,^^, 
x{t) = Fo - V (85) 

0)'^ — (On 
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is (aside from the factor FQ) the same as Eq. (5-59) for the special case where 
h =0. This solution to the inhomogeneous differential equation is referred to 
as the "steady-state" solution, as contrasted to the transient one [Eq. (5-34)] 
that becomes negligible with increasing time. The catastrophic behavior of the 
forced oscillator if co is close to OJQ was discussed in Section 5-33. 

PROBLEMS 

1. Show that F(k)i^G(k) = G(k)itF(k). 

2. Derive the expression for the Fourier transform of the boxcar [Eq. (20)]. 

3. Verify Eq. (23). 

4. To illustrate the self-convolution operation, draw two identical boxcars and eval­
uate the area in common as a function of their relative separation along the 
abscissa. 

5. Show that the Fourier transform of a Gaussian is also a Gaussian. 

6. Verify Eq. (30). 

7. Verify Eqs. (44) to (48). 

8. Verify Eqs. (49) and (50). 

9. Derive Eqs. (52) to (56). 

10. Derive Eq. (60). 

11. Compare Eq. (73) with the corresponding result for the damped mechanical oscil­
lator. 

12. Verify Eq. (75). 

13. Derive Eq. (79). 

14. Substitute Eq. (82) to show that it is a solution to Eq. (78). 

15. Demonstrate that Eq. (73) is a solution to Eq. (77). 

16. Carry out the integration indicated in Eq. (84) to obtain Eq. (85). 


