
2 Limits, Derivatives and Series 

2.1 DEFINITION OF A LIMIT 

Given a function y = f(x) and a constant a: If there is a number, say y, such 
that the value of f(x) is as close to y as desired, where x is different from 
a, then the limit of f(x) as jc approaches a is equal to y. This formahsm is 
then written as. 

Urn fix) = y, (1) 

A graphical interpretation of this concept is shown in Fig. 1. 
If there is a value of s such that \f(x) — y\ < s, then x can be chosen 

anywhere at a value 8 from the point x = a, with 0 < |jc — a| < 8. Thus it 
is possible in the region near x = a on the curve shown in Fig. 1, to hmit 
the variation in f(x) to as Uttle as desired by simply narrowing the vertical 
band around x = a. Thus, Eq. (1) is graphically demonstrated. It should be 
emphasized that the existence of the limit given by Eq. (1) does not necessarily 
mean that / (« ) is defined. 

As an example, consider the function 

sin X 
yM = . (2) 

X 

The function sin x can be defined by an infinite series, as given in Eq. (1-35). 
Division by x yields the series 

^ = l _ ^ + ^ _ . . . (3) 
X 3! 5! 

It is evident from the right-hand side of Eq. (3) that this function becomes 
equal to 1 as jc approaches zero, even though y(0) = ^* Thus, from a math­
ematical point of view it is not continuous, as it is not defined at x = 0. This 
function, which is of extreme importance in the applications of the Fourier 
transform (Chapter 11), is presented in Fig. 2. 

*This result, ^, is the most common indeterminate form (see Section 2.8). 



20 MATHEMATICS FOR CHEMISTRY AND PHYSICS 

y=f{x) 

y\/i 
{\ 2s 

t 

a 

Fig. 1 The limit of a function. 

Fig. 2 The function yix) 

It should be noted that computer programs written to calculate y(x) = 
sinxjx will usually fail at the point jc = 0. The computer will display a 
"division by zero" error message. The point JC = 0 must be treated separately 
and the value of the limit (y = 1) inserted. However, "intelligent" programs 
such as Mathematical' avoid this problem. 

It is often convenient to consider the limiting process described above in the 
case of a function such as shown in Fig. 3. Then, it is apparent that the limiting 
value of f{x) as JC -» a depends on the direction chosen. As x approaches a 
from the left, that is, from the region where x < a. 

Urn f(x) = Y- (4) 

""Mathematical Wolfram Research, Inc., Champaign, 111., 1997. 
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\26\ 

^ K+ 

Fig. 3 The limits of the function f{x) as x approaches a. 

Similarly, from the right the limit is given by 

Urn f(x) = y+. (5) 

Clearly, in this example the two limits are not the same and this function 
cannot be evaluated ai x = a. Another example is that shown in Fig. (1-3), 
where P -> oo as V approaches zero from the right (and — oo, if the approach 
were made from the left). 

2.2 CONTINUITY 

The notion of continuity was introduced in Chapter 1. However, it can now 
be defined more specifically in terms of the appropriate limits. 

A function f{x) is said to be continuous at the point x = a if the following 
three conditions are satisfied: 

(i) The function is defined at x = a, namely, f(a) exists, 
(ii) The function approaches a hmit as x approaches a (in either direction), 

i.e. lirux-^a fM exists and 
(iii) The Umit is equal to the value of the function at the point in question, 

i.e. linijc^a fM = f(a). 

See problem 3 for some applications. 
The rules for combining limits are, for the most part, obvious: 

(i) The Hmit of a sum is equal to the sum of the limits of the terms; thus, 
lim^^aUM + ^(•^)] = lirrijc^a fix) + //m^_« g{x). 
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(ii) The limit of a product is equal to the product of the Hmits 
of the factors; then lirrij^^aifM • gM] = H^x-^a fM ' lif^x-^a gM 
and hence linix-^alficx)] = clinix-^a fW^ where c is an arbitrary 
constant, 

(iii) The limit of the quotient of two functions is equal to the quotient of the 
limits of the numerator and denominator, if the limit of the denominator 
is different from zero, viz. 

Urn = ^^^^ , if Urn g(x) ^ 0. 
x~^a g(x) lim g{x) x^a 

Rule (iii) is particularly important in the tests for series convergence that will 
be described in Section 2.11. 

An additional question arises in the application of rule (iii) when both the 
numerator and the denominator approach zero. This rule does not then apply; 
the ratio of the limits becomes in this case ^, which is undefined. However, 
the limit of the ratio may exist, as found often in the applications considered 
in the following chapters. In fact, an example has already been presented [see 
Eq. (2)]. 

2.3 THE DERIVATIVE 

Given a continuous function y = f{x), for a given value of x there is a 
corresponding value of y. Now, consider another value of x which differs 
from the first one by an amount Ax, which is referred to as the increment 
of X. For this value of x, y will have a different value which differs from the 
first one by a quantity Ay. Thus, 

y-^Ay = fix-\- Ax) (6) 

or 
Ay = fix + Ax) - fix) il) 

and 
Ay ^ fix + Ax) - fix) ^^^ 
Ax Ax 

In the limit as both the numerator and the denominator of Eq. (8) approach 
zero, the finite differences Ay and Ax become the (infinitesimal) differentials 
dy and dx. Thus, Eq. (8) takes the form 

dj ,. Ay fix + Ax) - fix) 
— = lim — = lim , (y) 
dx AJC->O A X AA:^O A X 
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Fig. 4 The derivative: (a) Definitions of AJC and Ay; (b) tanO = -—. 
dx 

which is called the derivative of y with respect to x. The notation y' = dy/dx 
is often used if there is no ambiguity regarding the independent variable x. 
The derivative exists for most continuous functions. As shown in elementary 
calculus, the requirements for the existence of the derivative in some range 
of values of the independent variable, are that it be continuous, single-valued 
and differentiable, that is, that y be an analytic function of x. 

A graphical interpretation of the derivative is introduced here, as it is 
extremely important in practical applications. The quantities Ax and Ay are 
identified in Fig. 4a. It should be obvious that the ratio, as given by Eq. (8) 
represents the tangent of the angle 0 and that in the limit (Fig. 4b), the slope 
of the line segment AB (the secant) becomes equal to the derivative given by 
Eq. (8). 

It was already assumed in Chapter 1 that readers are familiar with the 
methods for determining the derivatives of algebraic functions. The general 
rules, as proven in all basic calculus courses, can be summarized as follows. 

(i) Derivative of a constant: 

where a is a constant, 
(ii) Derivative of a sum: 

da_ 

d^ 
= 0, (10) 

d dw dv 
— (w + u) = — + —, 
dx d^ djc 

(11) 

where u and v are functions of x. 
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(iii) Derivative of a product: 

d dv du ^_^ 
— (uv) = u—-\-v — . (12) 
dx djc dx 

(iv) Derivative of a quotient: 

- ( - ) = dx Vu/ 

du dv 

dx dx 

(v) Derivative of a function of a function: 
Given the function y[u(x)], 

dy dy du 

dx du dx 

Equation (14) leads immediately to the relations 

d j 

^ = f ^ i f ^ # 0 
djc dx dw 

du 

and 

(vi) The power formula: 

djc dx d)! 

dy 

(13) 

(14) 

d 1 du 
—u"=nu''-^— (15) 
djc dx 

for the function M(JC) raised to any power. 

The derivative of the logarithm was already discussed in Chapter 1, while 
the derivatives of the various trigonometric functions can be developed from 
their definitions [see, for example, Eqs. (1-36), (1-37), (1-44) and (1-45)]. 
A number of expressions for the derivatives can be derived from the problems 
at the end of this chapter. 

2.4 HIGHER DERIVATIVES 

If y is a function of JC, the derivative of y(x) is also, in general, a function 
of X. It can then be differentiated to yield the second derivative of y with 
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respect to jc, namely, 

/ ^ ^ = A ^ . (16) 
djĉ  dx dx 

It should be noted here that the operation of taking the derivative, that is, the 
result of the operator d/djc operating on a function of x, followed by the same 
operation, yields the second derivative. Thus, the successive application of 
two operators is referred to as their product. This question is addressed more 
specifically in Chapter 7. 

Clearly, y^^ in Eq. (16) represents the rate of change of the slope of the 
function y(x). The second derivative can be expressed in terms of derivatives 
with respect to y, viz.. 

(17) 

which leads to 

dy' _ 

dx 

d^y 

d^~ 

dy' 

^ 
dx 

d^ 

d^x 

d^ 

dx\' 
(18) 

a relation which is sometimes useful. 

2.5 IMPLICIT AND PARAMETRIC RELATIONS 

Often two variables x and y are related implicitly in the form f(x,y) — 0. 
Although it is sometimes feasible to solve for j as a function of x, such is not 
always the case. However, if rule (vi) above [Eq. (15)] is applied with care, 
the derivatives can be evaluated. As an example, consider the equation for a 
circle of radius r, 

x^-^y^ = r^. (19) 

Rather than to solve for y, it is more convenient to apply rule (vi) directly; 
then 2x + 2y(dy/dx) = 0 and y' = dy/dx = —x/y. The second derivative is 
then obtained with the use of rule (iv): 

d^y xy' — y 

d^^ y^ ' 

Sometimes the two variables are expressed in terms of a third variable, or 
parameter. Then, x = u(t) and y = v(t) and, in principle, the parameter t can 
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be eliminated to obtain a relation between x and y. Here again, this operation 
is not always easy, or even, possible. An example is provided by the pair of 
equations jc = f̂  + 2/ - 4 and y = t^ — t + 2. The two derivatives dx/dt and 
dy/dt are easily obtained and, with the aid of rule (v), their ratio becomes 

The second derivative is 

dy _ 

dx 

3t^- 1 

3f2 + 2 ' 

then given by 

d^y 18? 
djc2 (3/2 + 2)3 ' 

where the relations below Eq. (14) have been employed. This result is left as 
an exercise for the reader (problem 7). 

2.6 THE EXTREMA OF A FUNCTION AND ITS CRITICAL 
POINTS 

As shown in Fig. 4b, the derivative of a function evaluated at a given point is 
equal to the slope of the curve at that point. Given two points x\ and xj in the 
neighborhood of a such that xi < a and JC2 > (̂ , it is apparent that if f(xi) < 
f(a) < f(x2), the slope is positive. Similarly, if f(x\) > f(a) > fixi) in 
the same region, the slope is negative. On the other hand, if f{x\) < f(a) > 
f{x2) the function has a maximum value in the neighborhood of a. It is of 
course minimal in that region if f{x\) > f{a) < /(JC2). At either a maximum 
or a minimum the derivative of the function is zero. Thus, the slope is equal 
to zero at these points, which are the extrema, as shown by points a and c in 
Fig. 5. A function may have additional maxima or minima in other regions. 
In Fig. 5 there are maxima at x = a and x = b. As f(a) > f(b), the point a 
is called the absolute or principal maximum and that at Z? is a submaximum. 

It should be obvious from Fig. 5 that the curve is concave upward at a 
minimum (c) and downward at a maximum, such as a and b. As the second 
derivative of the function is the rate of change of the slope, the sign of the 
second derivative provides a method of distinguishing a minimum from a 
maximum. In the former case the second derivative is positive, while in the 
latter it is negative. The value of the second derivative at an extreme point is 
referred to as the curvature of the function at that point. 

A case that has not yet been considered in this section is shown in Fig. 5 
at the point x = d. At this point the slope of the first derivative is equal to 
zero, that is 

ck2 = 0. 
x=d 
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fix) 

Fig. 5 A function f{x) and its derivative, f'{x). 

Hence the point x = J is neither a maximum nor a minimum of the func­
tion f{x). Here, / (JCO > f{d) > / f e ) and, as xi < <i < X2, the slope is not 
equal to zero. The point jc = J is known as an inflection point, a point at 
which the second derivative or curvature is zero. The point jc = ^ is also an 
inflection point, as f" = 0. The ensemble of extrema and inflection points of 
a function are known as its critical points. 

An example of a function which exhibits an inflection point is provided by 
the well-known equation of Van der Waals,* which for one mole of a gas takes 
the form, 

( P + - ^ ) (V - Z7) = RT, (20) 

where a and b are constants. The derivative can be obtained in the form 

/dP\ _ -RT la 
(21) 

where the subscript T indicates that the temperature has been held constant.^ 
Note that the slope is equal to zero at infinite molar volume and becomes 
infinite at V = b. However, there is an intermediate point of interest along 
the curve T = T^. At this, the so-called critical point, the curve exhibits an 

*Johannes Diderik Van der Waals, Dutch physicist (1887-1923). 
^The derivative in Eq. (21) is an example of a partial derivative, a subject that will be treated 

at the end of this chapter. 
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Fig. 6 Isotherms of a Van der Waals fluid; the critical point is shown at c 
(1 atm. = 101 kPa). 

Fig. 7 Profile of a road. 

inflection point, as shown in Fig. 6. At this point the derivative of Eq. (21) is 
equal to zero and the corresponding molar volume is given by K = 3/?. The 
development of this result is left as an exercise (see problem 5). 

It should be noted that the isotherm which passes through the critical point 
(Fig. 6) is a "smooth curve" in the sense that both the function P(V) and its 
first derivative are continuous. However, the second derivative at the critical 
point is not. 

Another, more everyday example of this behavior occurs in road construc­
tion. An automobile begins its ascent of a grade at point a in Fig. 7. The 
pavement is both unbroken (the function is continuous) and smooth (its deriva­
tive is continuous). However, at point a, as well as at points b and c, the second 
derivative, which represents the rate of change in the grade, is discontinuous. 

2.7 THE DIFFERENTIAL 

When the change in a variable, say AJC, approaches zero it is called an 
infinitesimal. The branch of mathematics known as analysis, or the calculus. 
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is based on this principle, as both Ax and Ay approach zero in the hmit [see 
Eq. (8)]. For practical purposes the derivative dy/dx can be decomposed into 
differentials in the form dy = (d3;/djc)djc. While this operation deserves some 
justification from a purely mathematical point of view, it is correct for the 
purposes of this book. 

In this context Eq. (12) can be rewritten in the form of differentials as 

d(uv) = udv -\- vdu. (22) 

In other words the differential of a product of two functions is equal 
to the first function times the differential of the second, plus the second 
times the differential of the first. Numerous examples of this principle will 
be encountered in the exercises at the end of this chapter, as well as in 
following chapters. The other rules presented above can easily be modified 
accordingly. 

A geometrical interpretation of the differential is represented in Fig. 8. It is 
apparent that in general dy < Ay or dy > Ay, as the curve is concave upward 
or downward, respectively. 

It is often useful to evaluate the differential along a curve s such as shown in 
Fig. 9. Let As be the length of the curve y = f(x) measured between points 
a and b and assume that s increases as x increases. Thus, the derivative can 
be expressed as 

d̂ " . Aa 
dx AJC-̂ O AX 

= ji + \dx) 
(23) 

X O 

(a) (b) 

Fig. 8 Geometrical interpretation of the differential. 
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Fig. 9 Geometrical illustration of the infinitesimal of arc, d̂ ". 

and, as Â - approaches Aa in the limit, 

— 2 2 2 

ds = dx -\-dy . (24) 

Then the differential ds becomes the hypotenuse of the triangle shown in 
Fig. 9. The same result is obtained if s decreases as x increases. 

2.8 THE MEAN-VALUE THEOREM AND L'HOSPITAL'S RULE* 

An important theorem, often attributed to Lagrange,^ can be written in 
the form 

f(b) - f(a) 
f(x\) = 7 . (25) 

b — a 

Here f\xi) is the derivative dy/dx evaluated at a point x\ which is interme­
diate with respect to points a and b. From Fig. 10 it should be evident that 
there is always some point x = xi where the slope of the curve is equal to 
the right-hand side of Eq. (25). This theorem will be employed in Chapter 13 
to evaluate the error in linear interpolation. 

If two functions f(x) and g(x) both vanish at a point a, the ratio f(a)/g(a) 
is undefined. It is the so-called indeterminate form ^ mentioned earlier 

*Guillaume de L'Hospital, French mathematician (1661-1704). 

^Louis de Lagrange, French mathematician (1736-1813). 
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Fig. 10 The slope of a curve at x = xi. 

(Sections 2.1 and 2.2). However, the limit of this ratio may exist. In fact 
this principle is the very basis of the differential calculus, as indicated by 
Eq. (9). 

Consider now Eq. (25), with b replaced by jc, viz. 

f{x) = {x-a)f\xi)-^f(a). (26) 

Similarly, for another function g(x), 

gix) = {X - a)g\x2) + g{ay, (27) 

and, as the case of interest is f(a) = g(a) = 0, Eqs. (26) and (27) yield 

fix) fixi) 

gM g\X2) 
(28) 

Because both x\ and X2 lie between x and a, they both must approach a as x 
does. Thus, 

J. fM ,. fix) 
lim = lim 

>« g{x) >« g'{x) 
(29) 

which is known as L'Hospital's rule. A trivial example of its application is 
provided by the function sin x/x. In this case the ratio of the first derivatives 
evaluated at the origin is equal to unity, as shown earlier. 

An example which may be familiar to chemists, as it arises in extraction 
and fractional distillation, is the function 

y = 
x^+i -X 

jc«+i - 1 ' 
(30) 
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where n is an integer. This function is undefined at JC = 1. However, with the 
appUcation of Eq. (29), the hmit is given by 

km — = lim = (31) 

for all finite values of n. 
L'Hospital's rule has been applied above to cases in which the indeterminate 

form is ^. However, it is equally vahd for the form ^ . 

2.9 TAYLOR'S SERIES* 

Power series have already been introduced to represent a function. For exam­
ple, Eq. (1-35) expresses the function y = sin jc as a sum of an infinite number 
of terms. Clearly, for jc < 1, terms in the series become successively smaller 
and the series is said to be convergent, as discussed below. The numerical 
evaluation of the function is carried out by simply adding terms until the 
value is obtained with the desired precision. All computer operations used to 
evaluate the various irrational functions are based on this principle. 

Now assume that a given function can be differentiated indefinitely at a 
given point a and that its expansion in a power series is of the form 

f{x) = Co + ci(jc - «) + C2(x - af -f c^{x - af +--•. (32) 

If this series converges in the region around the point a, it can be used 
to calculate the function f{x) to a precision determined by the number of 
terms retained. Assuming that the series exists, the coefficients can be deter­
mined. Certainly, CQ = f(a) and, by successive, term-by-term differentiation 
the subsequent coefficients are evaluated. Thus, as 

/ ( J C ) = ci + 2c2(x - a) H- 3c3(x - af + 4c4(x - af -\---•, (33) 

f(a) = cu 

and 

ria) = 2-lc2 

r\a) = 3 . 2 . 1C3 

*Brook Taylor, British mathematician (1685-1731). 
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The general form of Taylor's series is then 

fix) - f(a) + f\a){x -a) + ^fia^x - af + ^r\a)(x - a)^ + • • • 

+ l-f(-\a)(x-ar-^'-^. (34) 
ni 

Thus, it has been shown that if a series as presented in Eq. (32) exists, it is 
given by Eq. (34). However, the function and its successive derivatives must 
be defined at x = a. Furthermore, the function must be analytic, the series 
must be convergent in this region and the value obtained must be equal to 
fix). These questions deserve further consideration for a given problem. 

An example of the development of a Taylor's series is provided by the 
expansion of the function In x around the point x = I. The necessary deriva­
tives become 

fix) = - fil) = 1 
X 

rix) = --^ r(i) = -i 

f'ix) = 4 /"(I) = 2 
x^ 

f^-\x) = (-l)«-i^^?—i^ /(«)(!) = i-l)--\n - 1)! 

and the series is then 

lnx = ix-l) + + (-1) + ••• . 
2 3 n 

(35) 
It can be shown that this series converges for 0 < x < 2 (see Section 2.11). 

An important special case of Taylor's series occurs when a = 0. Then, 
Eq. (34) takes the form 

fix) = /(O) + fiO)x + ^riO)x^ + ~f\0)x' + . • • 

+ 4/^"H0)x" + ..., (36) 
nl 
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which is known as Maclaurin's series.* An appUcation was introduced in 
Chapter 1, where one definition of the function sinx was expressed as an 
infinite series [see Eq. (1-35) and problem 9]. 

2.10 BINOMIAL EXPANSION 

Consider the development of the function (x -\- l)^ in a Maclaurin series, 

f(x) = l-\-ax -\ — x"- H \ ; X H . 

(37) 
The coefficients are known in the form 

l ) . - . ( Q ' - n + l) 
(38) 

as the binomial coefficients. In the special case in which a = n, a. positive 
integer, 

( " ) 
1 

and 

( „ : , ) = ( „ : 2 ) = - = ' ' -

The infinite series given by Eq. (37) then reduces to the polynomial 

which is Newton's binomial formula.^ 
The binomial expansion, Eq. (37), is particularly useful in numerical appH-

cations. For example, if of = ^, 

2 3 

f(x) = ix + iy^^ = l + ^ - j + ^----. (40) 

*Colin Maclaurin, Scottish mathematician (1698-1746). 

^Sir Isaac Newton, English physicist and mathematician (1642-1727). 
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Fig. 11 (a) The function j = (jc + 1)^/^; (b) Linear approximation; (c) Quadratic 
approximation. 

This function is shown in Fig. 11, where it is compared with the two-
and three-term approximations derived from Eq. (40). At values of x near 
zero these approximations become increasingly accurate. If, for example, 
X = 0.2100, 3; = (1 + 0.2100)^/2 = 1.1000, while the two-term approximation 
yields y = I +0.2100/2 = 1.1050. This development is often employed in 
computer programs. Clearly, for a given value of x the number of terms used 
is determined by the precision required in the numerical result. 

2.11 TESTS OF SERIES CONVERGENCE 

The most useful test for the convergence of a series is called Cauchy's ratio 
test.* It can be summarized as follows for a series defined by Eq. (32). 

(i) If limn-^^\Cn+\/Cn\ < 1 the series converges absolutely,^ and thus 
converges. 

(ii) If//m„^oo \Cn+\/Cn\ > 1, or if |c„+i/c„| increases indefinitely, the series 
diverges. 

(iii) If linin^oo |c„+i/c„| = 1 or if the quantity \Cn+\/Cn\ does not approach 
a limit and does not increase indefinitely, the test fails. 

*Augustin Cauchy, French mathematician (1789-1857). 

^A series is said to be absolutely convergent if the series formed by replacing all of its terms 
by their absolute values is convergent. 



36 MATHEMATICS FOR CHEMISTRY AND PHYSICS 

As an example, consider the series 

1 1 ^ x"" 

which was introduced in Chapter 1 as a definition of the exponential function. 
Application of the ratio test yields 

^ . ^ ^ c - V ( n ± l ) ! ^ , ^ x ^ O ; (42) 
rt->oo X"//l! n^oo n 

thus the series converges for all finite values of x. 
Another test can be applied in the case of an alternating series, that is, one 

in which the terms are alternately positive and negative. It can be shown that 
if, after a certain number of terms, further terms do not increase in value and 
that the limit of the n^^ term is zero, the series is convergent. 

As an example, consider the series 

x^ x^ x^ ^(-irjc^'^ 
sinx=x + - h . . . = >^ ^—^ , (43) 

3! 5! 7! ; ^ {2n)\ 

which was introduced in Section 1.7 [see Eq. (1-35)]. This series is alternating, 
with successive terms decreasing in absolute value. Furthermore, as 

y.2n 

Urn = 0, (44) 
n-^OQ {2n)\ 

the power series which defines the sine function is convergent for all finite 
values of jc. 

Two other important considerations are involved in the use of infinite series. 
Convergence may be assured only within a given range of the independent 
variable, or even only at a single point. Thus, the "region of convergence" 
can be identified for a given series. The reader is referred to textbooks on 
advanced calculus for the analysis of this problem. 

A second question arises in practical applications, because at different 
points within the region of convergence, the rate of convergence may be quite 
different. In other words the number of terms that must be retained to yield a 
certain level of accuracy depends on the value of the independent variable. In 
this case the series is not uniformly convergent. 
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2.12 FUNCTIONS OF SEVERAL VARIABLES 

Thus far in this chapter, functions of only a single variable have been consid­
ered. However, a function may depend on several independent variables. For 
example, z = f(xj), where x and y are independent variables. If one of 
these variables, say y, is held constant, the function depends only on x. 
Then, the derivative can be found by application of the methods developed 
in this chapter. In this case the derivative is called the partial derivative of 
z with respect to x, which is represented by dz/dx or df/dx. The partial 
derivative with respect to y is analogous. The same principle can be applied 
to implicit functions of several independent variables by the method devel­
oped in Section 2.5. Clearly, the notion of partial derivatives can be extended 
to functions of any number of independent variables. However, it must be 
remembered that when differentiating with respect to a given independent 
variable, all others are held constant. 

Higher derivatives are obtained by obvious extension of this principle. Thus, 

_9_ /dz\ _ dh_ 

dx \dx / 9JC^' 

as in Section 2.4 [See Eq. (16)]. It should be noted, however, that the order 
of differentiation is unimportant if the function z(x,y) is continuous. So that 

dxdy dydx 

a relation that is important, as shown in the following chapter. 
It is now of interest to define the total differential by the relation 

dz =0--(l)^-
This expression is a simple generalization of the argument developed in 
Section 2.7. It, and its extension to functions of any number of variables, 
is referred to as the "chain rule". In many applications it is customary to add 
one or more subscripts to the partial derivatives to specify the one or more 
variables that were held constant. As an example, Eq. (45) becomes 

dz (S).--(a<«-
This notation was suggested in Eq. (21) and is usually employed in thermo­
dynamic applications. 
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2.13 EXACT DIFFERENTIALS 

Equation (45) can be written in the general form 

8z = M(x,y) dx + N(xj) dy, (47) 

However, in the special case in which M(x,y) = dz/dx and N(x,y) = dz/dy 
the differential can be identified with that given by Eq. (45). As the order of 
differentiation is unimportant, the relation 

dM _ dh_ _ _dh_ _ d^ 

dy dydx dxdy dx 

is easily obtained. The total differential, which is then said to be exact, is 
written dz to distinguish it from the inexact differential denoted 8z. The condi­
tion for exactness, as given by Eq. (48), namely, 

^ . ^ (49) 
dy dx 

is attributed to either Cauchy or Euler, depending on the author. 
In thermodynamics the eight quantities P, V, T, E, S, H, F and G are 

the state functions, pressure, volume, temperature, energy, entropy, enthalpy, 
Helmholtz* free energy and Gibbs^ free energy, respectively. By definition, 
all of the corresponding differentials are exact (see Section 3.5). The thermo­
dynamics of systems of constant composition can be developed with the use 
of any of the following sets of three state functions: E,S,V; H,S,P; F,T,V; 
GJ,P. Thus, for example, with E = f(S,V) 

However, the first law of thermodynamics expresses the differential dE as 

dE = 8q-\-8w, (51) 

where the additional quantities q, the heat, and w the work have been intro­
duced.* Note that these two important thermodynamic quantities are not state 

*Hermann von Helmholtz, German physicist and physiologist (1821-1894). 

^J. Willard Gibbs, American chemical physicist (1839-1903). 

*The convention adopted here is that 8w is negative if work is done by the system. However, 
in some textbooks the first law of thermodynamics is written in the form dE = 8q — 8w, in 
which case the work done by the system is positive. 
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functions; thus, their differentials are not exact. However, for a gas under 
reversible conditions 8w = —PdV, while from the definition of the entropy 
as given in Section 3.5, 8q = T dS. The resulting expression, 

dE = TdS-PdV (52) 

can be compared to Eq. (50) to yield the relations 

( - ) = 
{dE\ 

r and — = -P. 

The application of the condition given by Eq. (49) leads to one of the four 
Maxwell relations,* viz. 

The other three can be derived similarly (see problem 10 and Section 7.6). 

PROBLEMS 

1. Find the first derivatives of the following functions: 

^ - 1 . , -̂  + 1 
y = ; Ans. y • V^^TT' (;c2 +1)3/2 

1 i/^-r ^—TT . / 2 2(2x - 3 sin X cos^ x) 
x^ x^ 3i/x^ + cos^x 

jc^ + l , 2 ( 2 J C - l ) ( j c + 2) 

^ = 4 ^ T ^ ^ " ^ - ^ = ( 4 . + 3)2 

y = tan(x sin x) Ans. y' = (x cos x 4- sin x) sec^(x sin x) 

y = sec^ X — tan^ x Ans. y' = 0 

2. Given the curve y = cos x, find the points where the tangent is parallel to the x 
axis. Ans. x = kn, /: = 0, ±1, ±2, • • • 

3. Evaluate the following limits: 

sin ka ^ , 
lim Ans. k 

* James Clark Maxwell, British physicist (1831-1879). 
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Urn (x^ — 3x) Ans. 2 

x'-x^ + 2x-S ^ ^^ 
lim Ans. 10 
x^2 X -2 

X H- tan X 2 
lim Ans. -
x^o sin 3x 3 

sin X — X 1 
lim Ans. — -
x^o x^ 6 

4. Verify Eq. (21) and calculate the second partial derivative. 
. d^P\ 2RT 6a 

Ans. ^-m {V - by v4 

5. Show that for a Van der Waals' fluid at the critical point 

a a 
Tc = :r—rr, Vc = ^b and P, = —-r 

21Rb 27Z?2 

6. Given the relation 
b(a-x) 

(a - b)kt = In 
a{b-xy 

where a ^ b are constants, find the expression for dx/dt. 
dx abk(a - bfe^^""-^^' 

• d̂  {ae^ia-b)t _ ^)2 

7. Given jc = /^ + 2r - 4 and y = r̂  - / + 2, evaluate d^> /̂djc^ 
Ans. cf. Section 2.5. 

8. If ^ = A cos kx -{- B sin kx, where A, B and k are constants, find the expression 
for d?-y/dx^. 

Ans. —- = —k^y 
dx^ ^ 

9. Verify the series for cos cp and sin cp given by Eqs. (1-34) and (1-35), respectively. 

10. Verify Eq. (53) and derive the other three Maxwell relations, namely, 

(^\ -(—\ {—\ -(—\ d (—\ --(—\ 

11. Find the first partial derivatives of the function z = ^x^y — y -\-3x — I. 

Ans. — = 8xy + 3, — = 4x^ - 2y 
dx ay 
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12. Given z^ + 2zx — x^ ~ j ^ , find the first partial derivatives z. 
dz X - z dz -y 

Ans. — = 
dx X -\- z dy X + z 

13. Verify the development of V^ as given in Appendix V. 

14. Given the function u = 3x^ -\-2xz — y'^, show that xidu/dx)-\-y(du/dy) 
-\-z{du/dz) = 2u. 

15. If w = ln{x^ + y^), show that (d^u/dx^) + (d^u/dy^) = 0. 

16. Show that u = e'^^ cos bt is a solution to the equation {d^u/dx^) = (du/dt), if 
the constants are chosen so that a = b^. 


