
3 Integration 

3.1 THE INDEFINITE INTEGRAL 

The derivative and the differential were introduced in Chapter 2. There, given 
a function, the problem was to find its derivative. In this chapter the objective 
is to perform the inverse operation, namely, given the derivative of a function, 
find the function. The function in question is the integral of the given function. 
It is defined by the expression* 

= / / ' ( . fM = ] fMdx, (1) 

As an example, consider the function f'(x) = x^. The prime on f{x) indi­
cates that this function df(x)/dx is the derivative of the function searched. 
Given the rules of differentiation [Eq. (2-15)], the function might be expected 
to have the form |jc^. This result is correct, although it should be noted that 
the addition of any constant to the function |jc^ does not change the value of 
the derivative, as the derivative of a constant is equal to zero. It must therefore 
be concluded that the indefinite integral is given by 

/ 
x^dx = -x"^ + C. (2) 

The constant C is the constant of integration introduced in the applications 
presented in Chapter 1 [Eqs. (1-20) and (1-24)]. There it was indicated that 
the determination of this constant requires additional information, namely, the 
initial or boundary conditions associated with the physical problem involved. 
Integrals of this type are, therefore, called indefinite integrals. 

*The notation f{x) = f dxf'(x) is often employed. It is, however, ambiguous in some cases 
and should be avoided. 
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3.2 INTEGRATION FORMULAS 

The general rules for obtaining an indefinite integral can be summarized as 
follows: 

I du = u 

ii) / (dw + du + • • • + dz) = / dw + / du + • • • + / dz, 

iii) I adu = a I du (5) 

(i) / dw = w + C, (3) 

(ii) / (dw + du + ••• + dz) = / dw + / du + • • • + / dz, (4) 

( 

and 

M«dw = + C, i f w # - l , (6) 
« + 1 

where a is a constant and n is an integer. Rule (iv) is the general power 
formula of integration. It is obviously the inverse of Eq. (2-15). 

Some other formulas for integration can be summarized as follows: 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

f x-^dx = 

j e^ Ax = e 

fsinxax = 

1 COS xdx = 

1 sec^x dx -

jsinhx^ 

Jcoshx6x 

r dx 
J T T ^ " 

In X -\- C 

^ + C 

: — COS X -\- C 

= sin X -\- C 

= tan X -\- C 

= cosh X -\- C 

= sink X -\- C 

tan~^ X -\- C 
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dx f = sin~'x + C (15) 

Many others are available in standard integral tables* and computer programs.̂  

3.3 METHODS OF INTEGRATION 

3.3.1 Integration by substitution 

Very often integrals can be evaluated by introducing a new variable. The 
variable of integration x is replaced by a new variable, say z, where the two 
are related by a well chosen formula. Thus, the exphcit substitution x = (piz) 
and djc = (d0/dz)dz can be made to simpHfy the desired integration. As an 
example, consider the integral 

/ 
x^ dx 

^x 
(16) 

where a is a constant. Let x^ — a^ — 7}; and, with dx = z dz/x, the integral 
takes the form 

/ 
^ ' ' ^ ' ' ' ^ ' ' ^ ' = -(x^ - a"?'^ + a\x^ - a^)"^ + C. (17) 

z 3 

The expressions, y/x'^ — a^, y/x^ 4- a^ and Va^ 
integrand. The substitution of a new independent variable for the radical should 
be made whenever the integrand contains a factor which is an odd integral 
power of X. Otherwise, the radical will reappear after the substitution. 

Trigonometric substitutions are often useful in evaluating integrals. Among 
the many possibilities, if the integrand involves the expression x^ + a^, the 
substitution x = atancp should be tried. Similarly, in the cases of x^ — a^ or 
o} — x^,\ht independent variable x should be replaced by a sec cp or a sin cp, 
respectively. As an example of the latter case, consider the integral 

r dx 

*B. O. Peirce, A Short Table of Integrals, Ginn and Company, Boston, 1929. 
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, 
New York, 1965. 

^Mathematica, Wolfram Research, Inc., Champaign, 111., 1997. 
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The substitutions x = a sin (p and dx = a cos (p dcp yield 

/

a cos (fdcp \ C cos (p dip 

(a^ - a^ sin^ ip)'^/^ a^ J cos^ip 
1 /* 2 , 1 

= —- I sec (pd(p = —T tan (p -\- C 
a^ J a^ 

+ C. (19) 
o?'\/a^ — x^ 

3.3.2 Integration by parts 

This method is the direct result of Eq. (2-22) for the differential of a product, 

d(uv) = u dv-\-V du. (20) 

Therefore, 

/ udv = uv— I vdu, (21) 

which is the basic formula for integration by parts. This method is very useful, 
although it is not always clear how to break up the integrand. As an example, 
consider the integral 

'xe-'dx. (22) = / 

With the choice dv = e ^ dx and u = x,v = —e ^ and, of course, du = dx. 
Eq. (22) then yields 

/i = -xe-"" + / ^-^ djc = - ( 1 + x)e-'' + C. (23) 

It should be apparent that in integrating du = e~^ dx it is not necessary to add 
the constant of integration, as the final result is not changed by its inclusion. 

The above example can be generalized. The integral 

/ „ = f jcV-^djc, (24) 

where n is a positive integer, can be reduced to Eq. (23) by successive inte­
gration by parts. Thus, 

/„ = -x'^e-' -\-n f x'-^e-' dx = -jc"^"^ + nh-x. (25) 

a result which is given in all integral tables. 
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3.3.3 Integration of partial fractions 

Another common method of integration involves partial fractions. First, it 
should be noted that every rational algebraic fraction can be integrated directly. 
A rational algebraic fraction is the ratio of two polynomials. If the polyno­
mial in the numerator is of a lower degree than that of the denominator, or 
can be made so by division, the resulting fraction can be written as the sum 
of fractions whose numerators are constants and whose denominators are the 
factors of the original denominator. Fortunately, in many cases the denomi­
nator can be broken up into real linear factors, none of which is repeated. As 
an example, consider the integral 

/ 

X 4-3 
^ dx. (26) 

X^ — X 

The integrand can be written in the form 

^ + 3 A B D 
= - + 7 + , (27) x{x + l)(jc — 1) X jc + 1 X — I 

where A, B and D are constants. Expressing the right-hand side of Eq. (27) 
over a common denominator yields the relation 

x-\-3 = -A-^(D-B)x-\-(A-\-B-i- D)x^ (28) 

and by equating coefficients of the various powers o fx ,A = —3,5 = 1 and 
D = 2. The proposed integral is then given by 

/*jc + 3 _ r d j c C dx ^ f ^ 

J x^-x J X J X-\-I J x-l 
(29) 

= -3/njc-h/n(jc + l)-\-2ln(x -l)-\-C 

= ,n" * " " - " ' + € . (30) 
X^ 

Integrals involving partial fractions occur often in chemical kinetics. For 
example, the differential equation which represents a second-order reaction is 

dx 
— =k{a-x)(b-x), (31) 
d̂  

where k is the rate constant and a and b are the initial concentrations of the two 
reactants. In Eq. (31) the independent variable x represents the concentration 
of product formed at time t. After separation of variables, Eq. (31) becomes 

dx 
= kdt. (32) {a — x)(b — x) 
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In the general case in which a ^ b the integration of the left-hand side of 
Eq. (32) can be carried out with the use of partial fractions. Then, the integrand 
is broken up in the form 

' + . ^ . (33) 
(a — x)(b — x) (a — x) (b — x) 

with A = l/(b - a) and B = -l/(b - a). The integral of Eq. (31) can then 
be expressed as 

/ 

djc 1 
- [ - ln(a - jc) -h Inib - x)] + C = kt. (34) (a — x)(b — x) (b — a) 

The initial condition x = 0 at ^ = 0 leads to the value of the integration 
constant, viz. 

1 1 a 
C = -{In b-lna) = — In - , (35) 

{b — a) (a — b) b 

and the resulting expression for the concentration of product at time t. 

b - «^^^(«-^) 
(36) 

The integration method illustrated above becomes somewhat more compH-
cated if the denominator contains repeated linear factors. Thus, if the denomi­
nator contains a factor such as {x —aY, n identical factors would result 
which could of course be combined. To avoid this problem it is assumed 
that \l{x — aY can be replaced by 

A B N 

X — a (jc — ay {x — aY 

The constants appearing in the numerator are then evaluated as before. 
The differential equation for a chemical reaction of third order is of the 

general form 
dx 

= k(a- x)(b - x)(c - x), (38) 
d̂  

where a, b and c are the initial concentrations of the three reactants. It can be 
integrated directly by application of the method just illustrated. In the special 
case in which two of the reactants have the same initial concentration, say 
b = c, Eq. (38) becomes 

dx o 
— =k{a-x)(b-xf (39) 
d̂  
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and the integral to be evaluated is 

dx f (a — x)(b — x) 2 ' (40) 

As the factor b — x appears twice in the denominator, the partial fractions 
must be developed as given by Eq. (37), namely 

1 A B D 
+ -. + r. ^ • (41) (a ~ x)(b — x)^ a—x b — x (b — x)^ 

The constants in the numerator are found to be A = l/{a — b)'^, B 
-\/{a - bf and D = I/(a - b), yielding 

/ 
^ 1 b — x 1 , _ ,,^, 

In + =kt-\-C. (42) {a — x)(b — x)^ ia — b)^ a—x (a — b)(b — x) 

The evaluation of the constant of integration is achieved by applying the initial 
condition x = 0 at t = 0. 

3.4 DEFINITE INTEGRALS 

3.4.1 Definition 

Let f(x) be a function whose integral is F(x) and a and b two values of x. 
The change in the integral, F(b) — F(a), is called the definite integral of f(x) 
between the limits a and b. It is represented by 

/ 

b 

fix) dx = [F(x)t = F{b) - F{a) (43) 

and it is evident that the constant of integration cancels. 
All definite integrals have the following two properties: 

(i) [ fix)dx = - r f{x)dx (44) 
Ja Jb 

and 
^b 

(: ii) f f(x)dx== r f(x)dx+ f fix)dx. (45) 
Ja Ja J c 

Relation (ii) is useful in the case of a discontinuity, e.g. a missing point at c, 
which usually lies between a and b. 
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3.4.2 Plane area 

For simplicity, assume that a continuous function f(x) is divided into n equal 
intervals of width Ax (see Fig. 1). Each rectangle of width Ax at a given 
point f(x) has an area of /(JC)AJC. Therefore, the definition of the area JA 
bounded by the curve j = /(jc), the JC axis and the limits x = a and x = b is 
given by 

JZI= lim Y2f{xk)Axk . 
Ax^O 

(46) 
k=\ 

Thus, if Axk is taken to be sufficiently small, and the number of rectangles 
correspondingly large, the sum of the areas of the rectangles will approximate, 
to the desired degree of accuracy, the value of the area J^l. Thus, as the widths 
Axk approach zero, the number of them, «, must approach infinity. It should 
be noted here that the intervals Axk have been assumed to be constant over 
the range a,b. It is not necessary from a fundamental point of view to divide 
the abscissa in equal steps Axk, although in most numerical calculations it is 
essential, as shown in Chapter 13. 

Assuming that the required limit exists and that it can be calculated, the 
fundamental theorem of the integral calculus can be stated as follows. 

lim ^f(xk)Axk= / f{x)dx 

and the desired area is given by 

JA f fix)dx. 

(47) 

(48) 

Fig. 1 The integral from x = a to x = b. 
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0 1 2 

Fig. 2 The area under the curve c [Eq. (48)] and the length of the curve c [Eq. (54)]. 

As an example, consider the parabola y = ^/x shown in Fig. 2. The area in 
the first quadrant under the curve between x = 0 and x = 1 is equal to 

!'''"-=[? .3/2 (49) 

as shown by the shaded area in Fig. 2. If the curve in this figure were cut into 
equal horizontal "slices" of width d j , the same area could be calculated as 

1 

Jo Jo 

where the first term corresponds to the square of unit area. 

/ d . = i - - = - , (50) 

3.4.3 Line integrals 

In Section 2.7 it was shown [see Eq. (2-23)] that a given element d^ along a 
curve is given by 

ds^Jl + 
\dx) 

dx. 

Thus, 

-[-'-'[HS)'''-

(51) 

(52) 

The symbol /^ c ds indicates that the integral is taken along the curve c from 
the point a to the point b. If the variables x and y are related via a parameter t. 
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the length of the curve can also be evaluated from the equivalent relation 

where ta and t^ are the values of t at points a and b, respectively. 
As an example, consider the passage from the origin to the point (1,1), as 

shown in Fig. 2. Obviously, the length of a straight line between these two 
points, the dotted line, is equal to >/2 = 1.414. However, from Eq. (52) the 
length of the curve defined by the parabola y = ^ between these same two 
points is given by 

/ ^ 1 + ^ djc = ^ [ z / T T ? + /« (z + y i + z 2 ^ ] ^ = 1 478, (54) 

where the substitution z = 2y/x has been made to simplify the integration. It 
should be noted that the upper limit to the integral is at x = 1, where z = 2. 

The method illustrated here for determining the length of a given curve 
can be extended to evaluate the surface of a solid. It is particularly useful in 
engineering applications to determine, for example, the surface generated by 
the revolution of a given contour. 

3.4.4 Fido and his master 

To illustrate some of the principles outlined above, consider the following 
story. A jogger leaves a point taken as the origin in Fig. 3 at a constant 
speed equal to v. His dog, Fido, is at that moment at the point x = a. As the 
jogger continues in the y direction, Fido runs twice as fast, at a speed 2v, 
always headed towards his master. The problem is then to find the equation 
that represents Fido's trajectory and the time at which he meets his master. 
The answers to these two questions are indicated in Fig. 3. The solution is as 
follows. 

The distance along the y axis covered by the jogger at time t is y = vt. 
Thus, the slope of the curve followed by Fido is given by 

^ = - ' - ^ ^ . (55) 

At the same time Fido has traveled a distance s = Ivt along the curve. There­
fore, replacing vt by s/2 in Eq. (55) and rearranging, yields 

X— = y- - . (56) 
dx 2 
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y = 2a/3 

(0,vt) 

Fido and his master at t = 2a Bv 

The jogger at r = 0 

Fido at / = 0 

Fig. 3 Fido and his master. 

With the use of Eq. (51) and the derivative of Eq. (56), 

— = -2x— = - ll-\-
dx dx^ \dx) 

(57) 

where the negative sign is chosen on the radical because the distance covered 
by Fido increases as x decreases. Equation (57) can be rewritten as a first 
order differential equation for y' = dy/dx. The variables are separable, viz. 

dy' dx 

v r + / 2 2x 
(58) 

The integration of the left-hand side of Eq. (58) can be carried out with the aid 
of the substitution y' — tan 9 (as suggested in Section 3.3.1), and the tabulated 
integral / sec Odd = In (tan 6 + sec 6) + C. The result is 

In (y' + yi + y'A +C=\lnx. (59) 

If the initial condition y' = 0 at f = 0 (where x = a) is imposed, the constant 
of integration h C = \ln a, and the solution becomes 

yi + y'^ = (60) 



54 MATHEMATICS FOR CHEMISTRY AND PHYSICS 

Here, again, the variables can be separated. If the left-hand side of Eq. (60) 
is multiplied and divided by y' — yj\ -h y'^, the relation 

(61) 

is easily obtained. Elimination of the radical ^ 1 + y''^ between Eqs. (60) and 
(61) leads to 

djc 2\y a V jc / 

which integrates to 

y 
I— la 

y/ax + —. 

(62) 

(63) 

The boundary condition x = a at j = 0 has been employed to evaluate the 
second integration constant. It is Eq. (63) that describes Fido's path, as shown 
in Fig. 3. At X = 0 he "catches up" with his master, who has jogged a distance 
equal to 2a/3 in time 2«/3u. 

3.4.5 The Gaussian and its moments 

A very important example of integration by substitution, is that of the function 
of Gauss,* exp{—z^), which is shown in Fig. 4. In practical applications this 
function can be written in the form 

f(z) = O^e-"' , (64) 

Fig. 4 The Gaussian function. 

*Carl Friedrich Gauss, German astronomer and mathematician (1777-1855). 
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where of is a constant and the factor CK is chosen to normaUze the function. 
The latter can be evaluated by application of the normalization condition 

(65) / / (z)dz = l. 
J —OQ 

hen,* 
/•+00 

J—oo 

ith the definition of the integrals 

nOO 

In = / z"e-"'' dz 

= 1 (66) 

(67) 

for n = 0, 1, 2 , . . . . Clearly, the integral /Q has the same value for any choice 
of symbol for the independent variable, say x or y. Thus, 

ll = / e-""' djc • / e-'^y dy= / ^""^^ +^ ^ djc dy. (68) 
Jo Jo Jo Jo 

Equation (68) can be converted to polar coordinates with the substitutions 
X = r cos 0 and y = r sinO. The result is given by 

Jo Jo 

r»+oo pn/2 -

I^= I I e-""- rdOdr = — (69) 

and from Eq. (66) JST = ^/ajn. The normalized Gaussian function of Eq. (64) 
is then 

/ ( ^ ) = & - ^ \ (70) 
V 7T 

In certain applications it is of interest to express the width of the Gaussian 
distribution at half its value at the maximum. Thus, as the maximum value is 
/(O) = y/a/n, the value of z at half of this value is y/ln Ija and the width 
at half-height is given by 

A,/2 = 2 y ^ , (71) 

as indicated in Fig. 4. The quantity A1/2 is referred to by spectroscopists as 
the "FWHM" for full width at half-maximum. 

*Note that fix) is an even function (Section 1.2); /J^^ /(z) dz = 1^^"^ f(z) dz. 
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A more general distribution can be expressed by a series of so-called 
moments, which are defined by 

/

+00 

z"f(z)dz. (72) 

-00 

In the present example f(z) is an even function, as given by Eq. (70). Hence, 
all moments with odd values of n vanish and the distribution is symmetric 
with respect to the origin. The first moment in this case is given by 

/

+00 pO p-\-oo 

zf(z)dz= zfiz)dz+ zf{z)dz 
-oo J—oo Jo 

/»—oo /»4-cx) 
= - / zfiz)dz+ / zf(z)dz^O. 

Jo Jo 
The second moment is 

(73) 

/

+00 P+OO 

z^fiz)dz = 2 / z^f(z)dz, (74) 
which, with f(z) given by Eq. (70), becomes 

i 
The integral in Eq. (75) can be evaluated by parts (see problem 4). 

+00 1 rjf 
M(2) = 2 / z^e-'^' dz = — , / - . (75) 

0 2 a V Of 

3.5 INTEGRATING FACTORS 

The concept of the total differential was introduced in Section 2.12. It is of 
importance in many physical problems and in particular in thermodynamics. 
In this application it is often necessary to integrate an expression of the form 

8z = M(jc, y)dx-\- N(x, y) dy (76) 

to determine the function z(x,y) evaluated at two points, x\,y\ and xj^yi- In 
general this integration requires the knowledge of a relation between x and y, 
i.e. y = f(x). Such a function specifies the path between the two points, and 
the integral becomes a line integral. As shown in Section 3.4.3, the value of 
the integral then depends on the chosen path.* 

*If a differential such as given in Eq. (76) is not exact, it is represented by 8z, following the 
custom in thermodynamics [see Eq. (2-47)]. 
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If the differential dz is exact, according to the chain rule it is given by 
Eq. (2-45), viz. 

^-(I)--(!)<-
with 

M(x, y) = ~ and N(x. y) = ^ . (78) 
ax ay 

It is evident that z(x,y) can be found even if the functional relation between 
X and y is unknown. In this case, then, the integral is independent of the path, 
as it depends only on the values of x and y at the two limits. 

In thermodynamic applications the integral is often taken around a closed 
path. That is, the initial and final points in the x,y plane are identical. In 
this case the integral is equal to zero if the differential involved is exact, and 
different from zero if it is not. In mechanics the former condition defines what 
is called a conservative system (see Section 4.14). 

Equation (76) can be written as 

dz = /x(x, y)8z = /x(x, y)M(x, y)dx + /x(x, y)N(x, y) dy, (79) 

where |x(x, y) is an integrating factor. It should be noted that the integrating 
factor is not unique, as there is an infinite choice. In general, it is sufficient 
to find one suitable factor for the problem at hand. 

An example is provided by the differential ydx—xdy, which is not exact. 
It is therefore written in the form 

8z = ydx-xdy. (80) 

However, if this expression is multiplied by 1/y^, it becomes 

ydx—xdy 
y2 - e ) (81) 

which is an exact differential. Clearly, l/y^ can be identified as an integrating 
factor. 

In thermodynamics the first law is often written in the form (see 
Section 2.13) 

dE = 8q + 8w, (82) 

where dE is the (exact) differential of the internal energy of a system, while 
8q and 8w are the (inexact) differentials of the heat and work, respectively. To 
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illustrate the roles of exact and inexact differentials consider the work done by 
the reversible expansion or compression of a gas, as given by the expression 

Sw = -PdV. (83) 

Equation (82) then yields 

Sq= dE + PdV. (84) 

However, as £ = f{V,T), 

d£ 
_(dE\ /dE\ 

dT 

and 
rdE\ r /9£'\ 

dV. 

(85) 

(86) 

In this form Eq. (86) cannot be integrated without a relation between P 
and V, because the second term on the right-hand side involves both vari­
ables. However, in the special case in which the gas is ideal, PV = RT for 
one mole and (dE/dV)T = 0 (see problem 6). The latter relation impHes the 
absence of intermolecular forces. Then, Eq. (86) becomes 

8q 
[dTjy d r - h 

RTdV 
= CvdT-\-

RTdV 

V 
(87) 

where the definition of the heat capacity per mole at constant volume, 
Cy = (dE/dT)y has been introduced. While Eq. (87) can be integrated if the 
temperature is held constant, a more general relation is obtained by dividing 
by T. Thus, Eq. (87) becomes 

8q Cv RdV 
— = — dr-f- . 
T T V 

(88) 

Clearly, the differential obtained, namely, dS = 8q/T is exact and 5, the 
entropy, is a thermodynamic state function, that is, it is independent of the 
path of integration. While Eq. (88) was obtained with the assumption of an 
ideal gas, the result is general if reversible conditions are applied. 

With the definition of the entropy, the substitution 8q = T dS can be made 
in Eq. (84); then, 

dE = TdS- PdV. (89) 
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This result leads to one of Maxwell's relations [Eq. (2-53)]. The three 
remaining relations are found by analogous derivations. 

3.6 TABLES OF INTEGRALS 

Many tables of indefinite and definite integrals have been published. They 
range from collections of certain common integrals presented in appendices 
to most elementary calculus books, the famous Peirce tables, to compendia 
such as that by Gradshteyn and Ryzhik. More recently, many integrals have 
become available in analytical form in computer programs. One of the most 
complete lists is included in Mathematica (see footnote in Section 3.2). 

Consider, as an example, the calculation of the mean-square speed of an 
ensemble of molecules which obey the Maxwell-Boltzmann distribution law.* 
This quantity is given by 

poo 
M2 = An{m/27TkTf'^ / ^"^" ' /^^^M"^ dw, (91) 

Jo 

where u is the speed of a molecule of mass m, /: is the Boltzmann constant and 
T the absolute temperature. While this integral can be evaluated by successive 
integration by parts (Section 3.3.2), it is much easier to employ the standard 
integral. It is given in the tables in the form^ 

L ~ A - " - d , = < ^ " - " " & (92) 
2{2aY S a 

where n is a positive integer and (2 > 0. Comparison of Eqs. (91) and (92) 
allows the identifications x = u and a = m/2kT to be made. With n = 2, the 
integral in Eq. (91) becomes 3(7t/2y/^(kT/m)^^^, leading to u^ = 3kT/m. It 
should be pointed out, however, that most relatively simple integrals which 
can be evaluated by the methods outlined in Section 3.3 are not included in 
the standard tables. 

When all else fails, recourse to numerical methods is indicated. Some of 
the classic methods of numerical integration are described in Chapter 13. 
However, it should be emphasized that numerical methods are to be used 
as a last resort. Not only are they subject to errors (often not easily evalu­
ated), but they do not yield analytical results that can be employed in further 
derivations (see p. 45). 

*Ludwig Boltzmann, Austrian physicist (1844-1906). 

^The notation (2n — 1)!! = 1 • 3 • 5 • 7 • • is often employed in integration tables. 
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PROBLEMS 

1. Evaluate the following indefinite integrals: 

J -s/x 3 

/ sin^ X dx Ans. - cos^ x — cos x -\- C 
3 

/

's/xdx 
Ans. 2Jx — 2 tan Jx + C 

1 +x 

f x^ + 2 1 3 
/ — dx Ans. X - 2In X -i- - ln(x -\- I) -^ - ln(x - I) -\- C 

2. Verify Eq. (54). 

3. Verify all of the steps in the solution to the problem of Fido and his master. 

4. Calculate the second moment of a Gaussian function as given by Eq. (75). 

5. Show that y~^ is an integrating factor for the differential given by Eq. (82). 

6. Demonstrate that (dE/dV)T = 0 for an ideal gas. 

7. Evaluate the following definite integrals: 

X sin X dx Ans. 0.342 

jcdjc 

/ 
Jo 

l o o (X2 + 1)2 

i 
Ans. 0 

xdx ^ I 

/ : 
dx 

V4^=^ 
Ans. 7T/3 

_ 2 1 

xe ^ dx Ans. - ( 1 — e~^) 2 

8. Verify Eq. (92) for n = 1. 
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9. Show that the FWHM of a Gaussian is given by Eq. (71). 

10. Derive an expression for / i / / o , where IQ = I e~'''''''^ sinO dO and 
Jo 

cos Oe-'"''''^ sin 0 dO. Ans.* L{a) = coth a - -
a Jo 

1 1 . Show that £{a) ^ - if a < 1.̂  

*The function £(a) is known as the Langevin function, after Paul Langevin, French physicist 
(1872-1946). The magnetic susceptibiHty of a paramagnetic substance can be expressed as 
Lil^m^/kT), where iitn is the magnetic moment, .C5 the magnetic flux, k the Boltzmann constant 
and T the absolute temperature. 

^At ordinary temperatures the magnetic susceptibihty is given approximately by jim^/'ikT. 
This relation was determined experimentally by Pierre Curie, French physicist (1859-1906). 


