
4 Vector Analysis 

4.1 INTRODUCTION 

To provide a mathematical description of a particle in space it is essential 
to specify not only its mass, but also its position (perhaps with respect 
to an arbitrary origin), as well as its velocity (and hence its momentum). 
Its mass is constant and thus independent of its position and velocity, at 
least in the absence of relativistic effects. It is also independent of the 
system of coordinates used to locate it in space. Its position and velocity, 
on the other hand, which have direction as well as magnitude, are vector 
quantities. Their descriptions depend on the choice of coordinate system. In 
this chapter Heaviside's notation will be followed,* viz. a scalar quantity 
is represented by a symbol in plain itaUcs, while a vector is printed in 
bold-face italic type. 

A useful image of a vector, which is independent of the notion of a coordi­
nate system, is simply an arrow in space. The length of the arrow represents 
the magnitude of the vector, while its orientation in space specifies the direc­
tion of the vector. By convention the tail of the arrow is the origin of the 
(positive) vector and the head its terminus. 

Although it is not at all necessary to describe a vector with reference to 
a system of coordinates, it is often useful to do so. The vector A shown in 
Fig. 1 represents the same quantity in either case. However, when attached 
to an origin (or any other given point) it can be expressed in terms of its 
components, which are its projections along a given set of coordinate axes. In 
the case of a Cartesian system^ the magnitude of the vector A, the length of 
the arrow, is given by 

A = ^Al + Aj + Al (1) 

*01iver Heaviside, British mathematician (1850-1925). 

^Rene Descartes, French philosopher, mathematician (1596-1650). 
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Fig. 1 A vector A in space and in a Cartesian coordinate system. 

4.2 VECTOR ADDITION 

The basic algebra of vectors is formulated with the aid of geometrical argu­
ments. Thus, the sum of two vectors A and B, can be obtained as shown in 
Fig. 2. To add B to A, the origin of B is placed at the head of A and the 
vector sum, represented by R, is constructed from the tail of A to the head of 
B. Clearly, the addition of A to B yields the same result (see Fig. 2); hence. 

A^B=B ^A=R (2) 

and vector addition is commutative. 
When three vectors A, B and C are added, the resultant R is the diagonal of 

the parallelepiped whose edges are the vectors, as shown in Fig. 3. The same 
result is obtained if any two of the vectors are combined and the sum is added 
to the third. Thus, 

(A+B)-\-C =A-]-(B -\-C) = {C -\-A)-\-B =A^B -\^C =R, (3) 

Fig. 2 The vector sum R =A-\-B. 
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Fig. 3 The vector sum R =A-\-B -{-C. 

and the associative law holds. Obviously, to subtract B from A, minus B is 
added to A, viz. 

A-B =A-\-i-B). (4) 

It should be noted that in the above presentation of the combination of 
vectors by addition or subtraction, no reference has been made to their compo­
nents, although this concept was introduced in the beginning of this chapter. 
It is, however, particularly useful in the definition of the product of vectors 
and can be further developed with the use of unit vectors. In the Cartesian 
system employed in Fig. 1 the unit vectors can be defined as shown in Fig. 4. 
It is apparent that 

A = A J + Ayj + A,k (5) 

and similarly for another vector 

B = BJ -^ Byj + BJi. 

The sum of these vectors is then given by 

A J + BJ = {A, + B,)i 

etc. for the other components. Then, 

A-\-B = (A,-^ B,)i + {Ay + By)j + (A, + B,)k, 

(6) 

(7) 

(8) 

where the magnitudes of parallel vectors have been added as scalars. In other 
words the components of the vectors can be added to obtain the components 
of their sums. 
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-.— >' 

Fig. 4 Definition of the unit vectors i, j , k. 

4.3 SCALAR PRODUCT 

The scalar (or inner) product of two vectors is defined by the relation 

A'B =ABcosO, (9) 

where 0 is the angle between the vectors A and B. Therefore, the scalar 
product of two perpendicular vectors must vanish, as ^ = 7r/2 and cos 0=0. 
Similarly, the scalar product of any unit vector with itself must be equal to 
unity, as ^ = 0 and, hence, cos ^ = 1. In terms of the unit vectors shown in 
Fig. 4, 

/ j =j k =k i =0 (10) 

and 
i'i=j j =k 'k = i^ = f = k^ = l. 

From Eqs. (9) and (11) it is evident that 

A B = A;cB;c + AyBy + A,B, 

(11) 

(12) 

in a Cartesian coordinate system. 
The scalar product, often called the "dot product", obeys the commutative 

and distributive laws of ordinary multiplication, viz. 

and 

A B =B A 

A'(B+C) = (A'B)-\-(A'C). 

(13) 

(14) 
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Furthermore, it is seen from Eq. (9) that any relation involving the cosine 
of an included angle may be written in terms of the scalar product of the 
vectors which define it. Finally, the reader is warned that a relation such as 
A ' B —AC does not imply that B = C, as 

A B -A C =A {fi -C)=^. (15) 

Thus, the correct conclusion is that A is perpendicular to the vector B — C. 

4.4 VECTOR PRODUCT 

Another way of combining two vectors is with the use of the vector (or outer) 
product. A description of this product can be developed with reference to 
Fig. 5. If A and B are two arbitrary vectors drawn from a common origin, 
they define a plane, providing of course that 0, the angle between them, lies 
in the range 0 < ^ < jr. If a vector C is constructed at the same origin and 
perpendicular to the plane, Eq. (12) leads to 

and 

C A = CjcAj, + CyAy + C,A^ = 0, 

C ' B =^ CxBx -\~ CyBy + C^B^ = 0. 

(16) 

(17) 

Equations (16) and (17) form a pair of simultaneous, homogeneous equations. 
They cannot be solved uniquely for the components of C However, their 
solution can be found in terms of a parameter a. The result, which can be 
easily verified (problem 1), is 

and 

Cy ̂  a{A,B, - A,B,) 

C,^a{A,By-AyB,). 

(18) 

(19) 

(20) 

Fig. 5 The vector product C =A x B. 
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The parameter a is arbitrary and, for convenience, can be chosen equal to plus 
one. Then, from Eq. (1) and Eqs. (18) to (20), 

C^ = Cl + C] + C\ = {A] + A^ + Al){Bl + Bl + BI) 

- (A,B, 

A^B^ -

{AB sin 

K+Ay 

A^B^ 

0f 

By + A,B,) 

cos^O 

(21) 

Thus, the vector C represents the product of the vectors A and B such that 
its length is given by C = AB sin 0. In the usual notation C =A x B.* This 
operation is referred to as the vector product of the two vectors and in the 
jargon used in this application it is called the "cross product". It must then be 
carefully distinguished from the dot product defined by Eq. (9). 

With the use of Eqs. (18) to (20) the vector product can be written in 
the form 

C =AxB = (AyB, - A,By)i + {A,B, - A,B,)j + (A,By - AyB,)k, 
(22) 

(23) 

(24) 

which is represented by 

AxB =i Ay A^ 
By By +j Bx B. + k By By 

or more conveniently by the single determinant 

AxB = 
Ax Ay A^ 
Bx By B. 

Following the general rules for the development of determinants (see 
Section 7.4), it is apparent that vector multiplication is not commutative, as 
A X B = —B X A. However, the normal distributive law still applies, as, for 
example, 

Ax{B+C)=AxB+AxC. (25) 

From the definition of the vector product given above, it is clear that the 
magnitude of the vector C in Eq. (22) is equal to the area of the parallelogram 
defined by the vectors A and B which describe its sides. However, there are 
two problems associated with this definition. First of all, the direction of the 
vector C is ambiguous in the absence of a convention. It is usually assumed, 
however, that the "right-hand rule" applies. Thus, if the first finger of the right 

*The notation C =A AB is used for the vector product in most texts in French. 
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hand is directed along A and the second along B, the direction of the vector 
C is indicated by the thumb. 

A second question arises for those who understand the importance of dimen­
sional analysis, a subject that is treated briefly in Appendix II. If A and B are 
both vector quantities with, say, dimensions of length, how can their cross 
product result in a vector C, presumably with dimensions of length? The 
answer is hidden in the homogeneous equations developed above [Eqs. (18) 
to (20)]. The constant a was set equal to unity. However, in this case it has the 
dimension of reciprocal length. In other words, C = aAB sin 0 is the length 
of the vector C. In general, a vector such as C which represents the cross 
product of two "ordinary" vectors is an areal vector with different symmetry 
properties from those of A and B. 

4.5 TRIPLE PRODUCTS 

Triple products involving vectors arise often in physical problems. One such 
product is (A X B) X C, which is clearly represented by a vector. It is there­
fore called the vector triple product, whose development can be made as 
follows. If, in a Cartesian system, the vector A is chosen to be collinear 
with the X direction, A = AJ. The vector B can, without loss of gener­
ality, be placed in the x,y plane. It is then given by B = Bxi + Byj. The 
vector C is then in a general direction, as given by C = Cxi + Cyj + C^k, 
as shown in Fig. 6. Then, the cross products can be easily developed in the 
form A X B = Ar Byk and 

(A X B) X C = -AxByCyi -h A^ByCxj. (26) 

Fig. 6 Development of the triple product (A x B) x C. 
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The evaluation of the scalar products A • C and B • C and substitution into 
Eq. (26) leads to the relation 

(AxB)xC = (A' C)B - (B C)A. 

An analogous derivation can be carried out to obtain 

C X {A X B) = {C B)A-(C A)B 

(27) 

(28) 

(problem 4). The two expansions of the triple vector products given by 
Eqs. (27) and (28) are very useful in the manipulation of vector relations. 
Furthermore, vector multiplication is not associative. In general, 

{AxB)xC y^Ax{B xC), (29) 

as can be shown by developing Eqs. (27) and (28). 
Consider now the vector product A x B, where these vectors are shown in 

Fig. 7. It is perpendicular to the x,y plane and has a magnitude equal to A^By, 
the area of the base of the parallelepiped. The height of the parallelepiped is 
given by Q = C cos 0. Therefore, the volume of the parallelepiped is equal 
to (A X B)' C = A ' B x C , which can also be written in the form of a deter­
minant of the components, viz. 

A B xC = 
Ay A, 
By B^ 
Cy C^ 

(30) 

It should be noted that the positive sign of this result depends on the choice of 
a right-handed coordinate system in which the angle 0 is acute. The relation 
developed here for the volume of a parallelepiped is often employed in crys­
tallography to calculate the volume of a unit cell, as shown in the following 
section. 

/ A 

Fig. 7 Calculation of the volume of a parallelepiped. 
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An important symmetry property of the scalar triple product can be illus­
trated by the relations 

(AxB)'C = {B xC)'A = (C xA)-B, (31) 

that is, successive cyclic permutation. However, it changes sign upon inter­
change of any two vectors. These results follow directly from the properties of 
the determinant, Eq. (30). Furthermore, the value of the triple scalar product 
is not altered by the exchange of the symbols "dot" and "cross"; thus, 

AxBC=BxCA=ABxC, (32) 

nor are the parentheses necessary in this case. 

4.6 RECIPROCAL BASES 

A set of three noncoplanar vectors forms a basis in a three-dimensional space. 
Any vector in this space can be represented by these three basis vectors. In 
certain applications, particularly in crystallography, it is convenient to define 
a second basis, in reciprocal space. Thus, if the vectors ti,t2 and 3̂ form a 
basis, in which t\ x 2̂ • 3̂ / 0, another basis can be defined by the vectors 
b{,b2 and ^3. The two bases are said to be reciprocal if 

ti'bj=8^, (33) 

where /, j = 1,2,3 and 8ij is the Kronecker delta.* Thus, for example, t\ - b\ = 
1, ̂ 1 . ̂ 2 = 0 and t\ b^ = 0. These relations show that b\ is perpendicular to 
both t2 and ^3; it is therefore parallel to 2̂ x ^3. Then, bi = ct2 x t^, where c 
is a constant. Scalar multiplication by t\ then gives t\ 'b\ = ct\ -12 x t^ = I. 
These relations then lead to the expression 

», = p ^ ^ . (34) 

The corresponding relations for 62 and b^ follow by cycHc permutations of 
the subscripts (see Chapter 8). 

An infinite three-dimensional crystal lattice is described by a primitive unit 
cell which generates the lattice by simple translations. The primitive cell can be 
represented by three basic lattice vectors such as t\, t2 and 3̂ defined above. 
They may or may not be mutually perpendicular, depending on the crystal 

*Leopold Kronecker, German mathematician (1823-1891). 
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system. The volume of the primitive cell is equal to t\ x t2' h and the position 
of each lattice point is specified by a vector 

T„ = ni^i + «2̂ 2 + «3^3, (35) 

where n\,n2 and ^3 are integers. 
The vectors which define the so-called reciprocal lattice are given by 

kh =hibi-\-h2b2-\-h3h, (36) 

where h\,h2 and h^ are integers. The analog of the primitive cell in reciprocal 
space is known as the first Brillouin zone.* Its volume is given by 

U U U ( ^ 2 X r 3 ) - [ ( ^ 3 X ^ i ) x ( r i X / 2 ) ] 1 , . ^ , 
bi b2xb3 = — —3 = . (37) 

The conclusion to be drawn from Eq. (37) is that the volume of the first 
Brillouin zone is equal to the reciprocal of the volume of the primitive cell. 
It should be noted that the scalar product 

Tn'kh= nxh\ + ^2^2 + ^̂ 3̂ 3 (38) 

is an integer. 

4.7 DIFFERENTIATION OF VECTORS 

If a vector /? is a function of a single scalar quantity s, the curve traced as a 
function of s by its terminus, with respect to a fixed origin, can be represented 
as shown in Fig. 8. Within the interval As the vector A/? = R2 - R\ is in 
the direction of the secant to the curve, which approaches the tangent in the 
limit as As -^ 0. This argument corresponds to that presented in Section 2.3 
and illustrated in Fig. 4 of that section. In terms of unit vectors in a Cartesian 
coordinate system 

R=iR,+jRy+kR,, (39) 

and 
dR ,dR^ ,dRy dR, 
dt dt dt dt 

Clearly, Eq. (40) includes variations in both the magnitude and direction of the 
vector /?. It is easily generalized to represent higher derivatives. For a function 

*Leon Brillouin, French-American physicist (1889-1969). 
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O 

Fig. 8 Increment of a vector R. 

of two or more vectors, each of which depends on the single scalar parameter s, 
the usual rules of differentiation hold, as summarized in Section 2.3 for scalar 
quantities. However, the order of the vectors must not be changed in cases 
involving the vector product. Specifically, if R{s) and S{s) are differentiable 
vector functions, 

d ( / ? x S ) „ dS di? ^ 
-^ -=Ry^— + — x S , (41) 

dt dt dt 

where it is essential to preserve the order of the factors in each term on the 
right-hand side of Eq. (41). 

4.8 SCALAR AND VECTOR FIELDS 

The term scalar field is used to describe a region of space in which a scalar 
function is associated with each point. If there is a vector quantity specified 
at each point, the points and vectors constitute a vector field. 

Suppose that 0(x,j,z) is a scalar point function, that is, a scalar function that 
is uniquely defined in a given region. Under a change of coordinate system 
to, say, x\ y\ z\ it will take on another form, although its value at any point 
remains the same. Applying the chain rule (Section 2.12), 

d(j) dx d(j) dy d(j) dz dcp dcj) d(j) d(j) ^^^^ 
— = 1 \ = ^11 \- a\2 \- a\2> — , (42) 
dx' dx' dx dx' dy dx' dz dx dy dz 

dcf) dcp dcj) d(t) 
7— = ^ 2 i T - +^227— +«23-r- (43) dy' dx dy dz 

and 
90 d(t) dcf) dcj) 
V~f = ^ 3 1 — +«32— +«33 — . (44) 
dz dx dy dz 
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The quantities d(j)/dx, d(p/dy and d(p/dz are components of a vector, 

V4> = i'/+j'^+k'^, (45) 
ax ay az 

which has been transformed from one coordinate system to another. This 
operation can be written in more compact form with the use of matrix algebra, 
a subject that is developed in Chapter 7. 

Equation (44) suggests that a vector operator V or nabla (called "del") be 
defined in Cartesian coordinates by 

ax ay az 

This operator is not a vector in the geometrical sense, as it has no scalar 
magnitude. However, it transforms as a vector and thus can be treated formally 
as such. 

4.9 THE GRADIENT 

The operator del is defined in Cartesian coordinates by Eq. (46). The result of 
its operation on a scalar is called the gradient. Thus, Eq. (45) is an expression 
for the gradient of 0, namely, V0 = grad 0, which is of course a vector 
quantity. The form of the differential operator del varies, however, depending 
on the choice of coordinates, as demonstrated in the following chapter. 

To obtain a physical picture of the significance of the gradient, consider 
Fig. 9. The condition d0 = 0 produces a family of surfaces such as that shown. 
The change in 0 in passing from one surface to another will be the same 
regardless of the direction chosen. However, in the direction of n, the normal 

0 = const 

Fig. 9 The normal w to a surface and the gradient. 
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to the surface, the space rate of change of 0 will be maximum. It is the change 
in 0 in this direction that corresponds to the gradient. 

4.10 THE DIVERGENCE 

The scalar product of the vector operator V and a vector A yields a scalar 
quantity, the divergence of A. Thus, 

V A =divA = 

dA 

' d d d' 
i h J Vk — 

dx dy dz. 
dAy dA, 

dx dy dz 

[iA,+jAy^kA,] (47) 

(48) 

If A represents a vector field, the derivatives such as dA^/dx transform 
normally under a change of coordinates. 

As a simple example of the divergence, consider the quantity V • r, where 
r = X -\-y + z . Then, 

V r = \i—-\-J—-^k—]-(ix-\-jy-\-kz) 
dy dz 

dx dy dz 
= — -f — 4- — = 3. 

dx dy dz 
(49) 

4.11 THE CURL OR ROTATION 

The vector product of V and the vector A is known as the curl or rotation of 
A. Thus in Cartesian coordinates. 

curl A = W X A = i 

-\-k 

dA, dAy 

dy dz 

dAy dA, 

dx dy 

d d d_ 

dx dy dz 

i j k 

+j 
dz dx 

(50) 

(51) 

In the development of the determinant in Eq. (51), care must be taken to 
preserve the correct order of the elements. 
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The following important relations involving the curl can be verified by 
expanding the vectors in terms of their components /, j and k in Cartesian 
coordinates: 

V X ( A + B ) = V x A + V x B , (52) 

V X (0A) = V0 X A + 0V X A, (53) 

V{A B) = {B . V)A + (A-V)B 

+ B X (V X A) + A X (V X B), (54) 

V - ( A x B ) = ^ . V x A - A . V x ^ (55) 

and 

V X (A xB)= : ( f i . V ) A - 5 ( V - A ) - ( A - V ) B + A ( V - B ) (56) 

(problem 10). 

4.12 THE LAPLACIAN* 

In addition to the above vector relations involving del, there are six combina­
tions in which del appears twice. The most important one, which involves a 
scalar, is 

V . V(/> = ¥^0 = divgrad^). (57) 

The operator V^, which is known as the Laplacian, takes on a particularly 

simple form in Cartesian coordinates, namely, 

However, as shown in Section 5.15 it can become more complicated in other 
coordinate systems. When applied to a vector, it yields a vector, which is 
given in Cartesian coordinates by 

2 _ 9̂ A a^A d^A 

dx^ dy^ dz^ 

*Pierre Simon de Laplace, French astronomer and mathematician (1749-1827). 
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A third combination which involves del operating twice on a vector is 

,3M, .9M, 
V(V . A) = graddivA = i —f +j-

+ i 
d^A, 

+ 
d^A: u.r 3 M , aM, 

+ *• 

+* 

aM. 

+ 
aM, 

9jfaz a^az _axa}' axazj ' " \_'dxdy ' dydz 

The cross product of two dels operating on a scalar function </> yields 

V X V(p = curl grad <p 

= 0. 

a 
dx 
d(p 
dx 
i 

a 
9y 
a(̂  
ay 
j 

a 
az 
a(̂  
az 
k 

(60) 

(61) 

If V X A = 0 for any vector A, then A = V0. In this case A is irrotational. 
Similarly, 

V • V X A = d/v cur/A = 0. (62) 

Finally, a useful expansion is given by the relation 

V X (V xA) = curl curl A = V(V -A) - V^A. (63) 

4.13 MAXWELL'S EQUATIONS 

To illustrate the use of the vector operators described in the previous section, 
consider the equations of Maxwell. In a vacuum they provide the basic 
description of an electromagnetic field in terms of the vector quantities <? 
the electric field and ^^ the magnetic field. The definition of the field in a di­
electric medium requires the introduction of two additional quantities, the 
electric displacement & and the magnetic induction ^ . The macroscopic 
electromagnetic properties of the medium are then determined by Maxwell's 
equations, viz. 

and 

V • ^ = 0, 

V X ^ = 7 + ^ 

(64) 

(65) 

(66) 

(67) 
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In these expressions p is the charge density in the medium and J is the current 
density. 

In isotropic media ^ and S are related by ^ = eS, where the scalar para­
meter e is now referred to as the permittivity.* In the international (SI) system 
it is given by £ = e^^o. where ^o is the permittivity of vacuum (see Appendix 
II) and Er is a dimensionless permittivity that characterizes the medium. 
Furthermore, according to Ohm's law^ the current is given by J = G8, where 
a is the electrical conductivity. The relation V • ^ = 0 is a mathematical 
statement of the observation that isolated magnetic poles do not exist. 

A very general relation, that is known as the equation of continuity, has 
apphcations in many branches of physics and chemistry. It can be derived by 
taking the divergence of Eq. (66). Then, from Eq. (62) the relation 

V - V x ^ ' = V - ( / + e ^ ) = V . 7 + p = 0, (68) 

and hence 

is easily obtained. This result can be interpreted in electromagnetic theory as 
follows. The divergence of the current density (flux) from a system must be 
compensated by the rate of decrease in charge density within the system. This 
statement is a special case of the general divergence theorem, which is derived 
in Appendix VI. 

In atomic and molecular spectroscopy it is the electric field created by the 
light excitation that is the origin of the interaction with a sample. The effect of 
the magnetic field is several orders of magnitude weaker. In this application, 
then, unit relative permeability* will be assumed and SR will be replaced by 
/ x o ^ ' in Eqs. (65) and (67). Equations (64) to (67) become 

V.fi^ = p , (70) 

V . ^ ' = 0, (71) 

V ^.W^aS^eS (12) 

and 
V X <? = -fio.9t\ (73) 

*This quantity was previously called the dielectric constant. It is in general a function of 
frequency and therefore not a constant. 

^Georg Simon Ohm, German Physicist (1789-1854). 

*In the SI system 6& — ̂ di^ = iiriiQ^\ where ^ is the permeability of the medium. Here 
again it is written as the product of the permeability of vacuum and a relative quantity /x^, by 
analogy with the permittivity (see Appendix II). 
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respectively. The curl of Eq. (73) yields the relation 

V X (V X /^) = - /xoV X m\ (74) 

= -^ioa£ - fu.o£(S, (75) 

where the time derivative of Eq. (72) has been substituted. With the use of 
the vector relation given by Eq. (63) the differential equation for the electric 
field can be written as 

V^S - V (V . ^ )̂ = /xo£/? + /xocr<5. (76) 

It can be easily demonstrated that plane-wave solutions to Eq. (76) are of 
the form 

for monochromatic waves of frequency v propagating in the direction of r 
(see problem 14). Here, k is the propagation vector in reciprocal space. 

From Eq. (77) the relations 

i^i=-2niv^l (78) 

V • c? = -2nik • .̂̂  (79) 

and 
V X i? = -Inik X ̂ ^ (80) 

can be easily obtained. Their substitution in Eq. (76) yields 

-(k . iS)k + (k . ifc)i$ = - y V o (s + ^ ) <5 = (-^ n^S, (81) 

where by definition fp- = Sr -\- cri/lnvso is the square of the complex refrac­
tive index of the medium. By taking the scalar product of k with Eq. (81) it 
is found that 

fi^k • c? = 0. (82) 

Thus, as fi is not in general equal to zero, k - <S = 0, which describes a trans­
verse wave, with the electric field perpendicular to the direction of propagation. 
The complex refractive index is then given by 

n = Jsr + =n -\- iK, (83) 
2nvsQ 
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the fundamental relation between the electrical and optical properties of a 
material. Note that in a nonconducting medium (a = 0) the permittivity is 
equal to the square of the (real) refractive index. 

In an anisotropic solid both e and cr become tensor quantities, that is they 
are represented by 3 x 3 matrices (see Section 7.3). In general, then, a solid 
may exhibit anisotropy with respect to both the real and imaginary parts of 
the refractive index. 

4.14 LINE INTEGRALS 

Line integrals were introduced in Section 3.4.3. The principles presented there 
can be easily recast within the vector formalism of this chapter. Thus, 

/ 
A'ds (84) 

is one form of the line integral from a to b along curve 1, as shown in Fig. 10. 
Its evaluation, which results in a scalar quantity, can be carried out if A • d 5" 
is known as a function of the coordinates, say, x, y, z. A special case arises in 
which the function to be integrated is an exact differential (see Section 2.13). 
Thus, if 

A = V0, (85) 

where 0 is a scalar point function, 

pb pb nb r 
/ Ads^ V4>ds = 

J a Ja J a L 

dcj) , 90 , 90 , 
- ^ d x + - ^ d y + - ^ d z 
ax ay az 

= f d(t> = (t>t-(t>a- (86) 
Ja 

If the integration is taken around a closed curve, as shown in Fig. 10,* 

( V(j)'ds = (fw(t)-ds = 0. (87) 

Conversely, if / V0 • d̂  = 0, then Eq. (85) must hold and A is the gradient 
of some scalar point function 0. In conclusion, if A = V0, the Hne integral 

*The symbol ^ ds represents a line integral around a closed path. 
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Fig. 10 Evaluation of line integrals. 

f^ A • ds depends only on the initial and final values of 0 and is independent 
of the path. 

The results obtained above are of fundamental importance in many physical 
problems. In mechanics, for example, a system is said to be conservative if 
the force on a given particle is given by 

/ - - V 0 , (88) 

where 0 is a scalar potential function. Thus, from Eq. (61), V x / = 0 , and 
the force is irrotational. Furthermore, ^ V(/> • d^ = 0, as shown. 

In thermodynamics the state functions are independent of the path. That 
is, the reversible processes involved in passing from a given initial state 
to the final state are not involved in the resulting changes in such func­
tions. The differentials of state functions are of course exact, as shown in 
Section 3.5. 

4.15 CURVILINEAR COORDINATES 

In previous sections of this chapter, vectors have been described by their 
components in a Cartesian system. However, for most physical problems it 
is not the most convenient one. It is generally important to choose a system 
of coordinates that is compatible with the natural symmetry of the problem 
at hand. This natural synmietry is determined by the boundary conditions 
imposed on the solutions. 

If the Cartesian coordinates jc, y and z are related to three new variables by 

x=x(^u^2,^3), (89) 

y = y(^u^2,^3) (90) 

and 
Z = ^(§1,^2,§3). (91) 
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The chain rule leads to expressions such as 

dx = I f dt. +1^(1^2 + I f df3, (92) 
d?i cl?2 0^3 

with analogous relations for the other differentials. The most important case 
is that in which the new coordinates are orthogonal; that is, their surfaces 
^i = constant, (/ = 1,2,3) intersect at right angles. Then, the square of the 
distance between two adjacent points is given by 

(dsf = (dxf + (dyf + (dzf = h](d^,f + hl(d^2f + hl(d^3)\ (93) 

where the /z/'s are scale factors, with 

The distance between two points on a coordinate line is the line element 

dsi=hid^i. /== 1,2,3 (95) 

Thus, the element of volume becomes equal to 

d5'i d̂ 2 d5'3 = h\h2h3 d^\ d̂ 2 d^3- (96) 

As explained in Section 5.9, each component of d(j)/dsi = (l//z/)(80/9§/) 
is its directional derivative. In a curvilinear system its component perpendic­
ular to the surface §/ = constant (that is, in the direction of si) is 

^ = 1 ^ , (97) 
dsi hi d^i 

following Eq. (95). Then V0 can be written in the form 

V,/, = ^ ^ + f i ^ + ^ ^ , (98) 
h\ d^i hi 9§2 ^3 9?3 

where the ^/'s are unit vectors along the curvilinear coordinate axes. 
It is now necessary to derive analogous relations for the divergence of a 

vector, viz. V -A. The calculation can be carried out in at least two ways. 
The direct analytic approach is long, but does not involve any methods other 
than those of vector algebra. Otherwise, it is necessary to develop the diver­
gence (Gauss's) theorem, after which the desired result is easily obtained (see 
Appendix VI). In either case it is given by 

V ^ A = ' 
hihih^ 

C\ Ci O 

-riAihihj) + --(A2h\hi) + --{Aihih2) (99) 
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9 1 

V • V0 = V^0 hih2h3 

d d //ii/i2 90 Y 

/Zl/Z3 9 0 

/Z2 9§2 . 

(100) 

as the components of V0 are A/ = l//z/(90/3^/) [see Eq. (98)]. Analogous 
expressions for V^A can be obtained with use of the expansion 

V^A = V ( V . A ) - V X V x A . (101) 

The general expressions developed in this section can be applied to a given 
problem by calculating the /i/'s from Eq. (94), providing of course that the 
coordinate transformations given by Eqs. (89) to (91) are known. Some well-
known examples will be treated in the following chapter. 

PROBLEMS 

1. Show that Eqs. (16) and (17) are verified by the substitutions of Eqs. (18-20). 

2. Given two vectors A = 4i -\-j + 3k and B =i —3j —k, calculate: A-\-B,A B 
and AxB. Ans. 5i - 2/ + 2k, - 2 , 8i + 7/ - \3k 

3. If A = 2i -\-4j -\-k and B = -2i -\-J + 2A:, find A, B,AB, and cos 6. 

Ans. V2T, 3, 2, 0.1455 

4. Verify Eqs. (27) and (28). 

5. Demonstrate the inequality of Eq. (29). 

6. With the use of Eq. (24), calculate the volume of the parallelepiped defined by 
the vectors A = i +2J -\-k,B =j + k and C =i —j. Ans. 4 

7. Show that (A x ^ ) • (C x D) = (A • C){B •/>) - (A D){B • C). 

8. Calculate the angles between two diagonals of a cube. Ans. cos~^ \ 

9. Find the angle between the diagonal of a cube and a diagonal of a face. 

Ans. cos~^'s/2/3 

10. Demonstrate Eqs. (52-56) by expansion in Cartesian coordinates. 

11. Show that if a vector A is irrotational, A = V0, where 0 is a scalar. 

12. Prove Eqs. (62) and (63). 
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13. Given a force/ = i — zj — yk, show that it is conservative, i.e. that V x / = 0. 
Find a scalar potential 0 such that / = — V(/). Ans. 0 = —x + }̂ z. 

14. Show that Eq. (77) represents a solution to Eq. (76). 

15. From Eq. (3) derive the relations for the real and imaginary parts of the refractive 
index as functions of the permittivity and the electrical conductivity of a given 
medium. Note that both n and K are defined as real quantities. 

1 
Ans. /ĉ  = 

and n^ = -
2 

-^r + Jef^ ATT^v^el 

^r+Jsj^ 
4T[^V^SQ 

where the positive square roots are to be taken. 

15. Show that in the case of a relatively poor conductor, K % (a/4jT VSQ) and n ~ y ^ . 


