
5 Ordinary Differential Equations 

Differential equations are usually classified as "ordinary" or "partial". In the 
former case only one independent variable is involved and its differential is 
exact. Thus there is a relation between the dependent variable, say y(x), its 
various derivatives, as well as functions of the independent variable x. Partial 
differential equations contain several independent variables, and hence partial 
derivatives. 

The order of an ordinary differential equation is the order of its highest 
derivative. Thus, an ordinary differential equation of order n is an equation of 
the form 

F(x,y,y\... , j^ '^^)=0. (1) 

If the dependent variable y(x) and all of its derivatives occur in the first degree 
and do not appear as products, the equation is said to be linear. In effect, the 
solution of a differential equation of order n necessitates n integrations, each 
of which involves an arbitrary constant. However, in some cases one or more 
of these constants may be assigned specific values. The results, which are also 
solutions of the differential equation, are referred to as particular solutions. The 
general solution, however, includes all of the n constants of integration, whose 
evaluation requires additional information associated with the application. 

5.1 FIRST-ORDER DIFFERENTIAL EQUATIONS 

A first-order differential equation can always be solved, although its solution 
is not necessarily easy to obtain. If the variables are separable, the equation 
can be reduced to the form 

f(x)dx = g(y)dy, (2) 

and the integration can usually be carried out by one of the methods illustrated 
in Section 3.3. 

Furthermore, as shown in Section 3.5, a differential equation such as 

N{x,y)dx + M(xj)dy = 0 (3) 
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can be integrated directly if the left-hand side is an exact differential. Although 
most differential equations of this type are not exact, in principle they can be 
made so by the introduction of a suitable integrating factor. If the equation is 
linear, which is often the case, it can be written as 

^-^yp(x)=q(x). (4) 

Now, if a function /x(x) is chosen so that 

fi'ix) d 
p(x) = —-- == —In /x(x), (5) 

/x(x) djc 

this function is 

^M(x) = ef'^''^'^, (6) 

and Eq. (4) becomes 
dy ii\x) 
T- + J—7— =qM' (7) 

ax iJi(x) 

If both sides are multiplied by /x(jc), Eq. (7) can be written as 
/x(x)y + yfM\x) = --[i^(x)y] = i^(x)q(x). (8) 

ax 

Thus, 

jji{x)y = / fi(x)q(x)dx + C, (9) 

and the function fiix) = e-l ^^^^^ is the desired integrating factor. 
As an example, consider the differential equation 

dy 
-f-yx=x, (10) 
ax 

By comparison with Eq. (4), p = —x,q = x and the integrating factor is the 
1 2 

Gaussian function /x = e~2^ . With the introduction of this factor in Eq. (10), 

e 2̂  xe 2"^ y = xe 2̂  (11) 
ax 

and 

— {e--2''y)=xe--2'\ (12) 
dx 
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The solution to Eq. (10) is then obtained from 

^-2^ y= xe—2' dx = - ^ - 2 ^ + C, (13) 

or, simply, 
i v2 

y = Ce-2' - 1 , (14) 

as can be easily verified by substitution. 

5.2 SECOND-ORDER DIFFERENTIAL EQUATIONS 

Many second-order differential equations arise in physical problems. Fortu­
nately, most of them can be cast into a relatively simple form, namely, 

PM^ + QM^ + R(x)y = 0, (15) 

where P(x), Q{x) and R{x) are polynomials. As the right-hand side of Eq. (15) 
is equal to zero in this case, the equation is said to be homogeneous and the 
method of series solution can be applied. This method is illustrated as follows. 

5.2.1 Series solution 

The dependent variable y(x) is written in a power series, viz. 

y(x) = ao-^aix -j-ai-^^H = ^<3„x". (16) 
n 

Successive differentiation yields 

-^ =ai-\- laix -f- 3a3jc^ + . • • = V n«„jc""^ (17) 
ax ^-^ 

n 

and 

djc2 
n 

The polynomial coefficients are of the form 

P{X) = PQ + PXX + P2X^'-' , (19) 

Q(x) = qQ^qxX+q2X^'-' (20) 

(j2 

—^ = 2tZ2 + 6a3jc -h \2a^x^ . . . = ^ «(« - l)a„jc"~^. (18) 
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and 
R(x) = ro + rix+r2X^'". (21) 

The result of the substitution of Eqs. (16) to (21) into the differential equation 
[Eq. (15)] can be collected in powers of x. The constants, that is, the coeffi­
cients of x^, lead to the relation 

2a2Po + <3i(7o + ^0^0 = 0. (22) 

Thus, 

a2 = , (23) 
2po 

a function of the two coefficients ao and a\. Equating the coefficients of x 
will yield an expression for a^, namely 

6 P O 1 L 

, , roipi -\-qo) 

Po 
«0 + 

qoJPi -\-qo) , , , 
{q\ + ^o) « i [ , (24) 

where the expression for a^ given by Eq. (23) has been employed. In prin­
ciple, this procedure can be continued to obtain successive coefficients a„ as 
functions of only ^o and a\, two constants of integration. 

An over-simpUfied example of this method is provided by the differential 
equation 

d^y 
j 2 - r = 0. (25, 

Here, by comparison with Eq. (15) P{x) = 1, Q(x) = 0 and R(x) = —1; thus, 
all three coefficients in Eq. (15) are independent of jc. The dependent variable 
y(x) and its derivatives are developed as above [Eqs. (16) and (18)]. Substi­
tution into Eq. (25) yields the relations «2 = ^o/2, a^ = a\/6, etc., which can 
be generalized in the form of a recursion formula for the coefficients, 

an+2 = • (26) 
"^' (« + l ) ( « + 2 ) 

A particular solution to Eq. (25) can be obtained by posing ao = ai = 1; then, 

yi = l + x + |x2 + ljc^ + . . . = ^ \ (27) 

where the identification of the series as the exponential has been made [see 
Eq. (1-10)]. It is easily verified by substitution that the exponential is a solu­
tion. However, it is also easy to show that the function j2 = e~^ is another 
solution to Eq. (25). As the ratio of these two solutions, yi/y2 = e^^ ¥=• ^^ 
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they are independent particular solutions. The general solution can then be 
written as 

y = Ayi-\- By2 = Ae' + Be-\ (28) 

where the constants of integration, A and B, are to be determined by the 
appropriate boundary conditions. From the definitions of the hyperbolic func­
tions sink X and cosh x [Eqs. (1-44) and (1-45)], it should be evident that the 
solution given by Eq. (28) can also be expressed in terms of these functions 
(see problem 3). 

If in Eq. (15), /? = -fl, Eq. (25) becomes 

d^y 
^ + . = 0, (29) 

and the particular solutions in this case are of the form e^^^, as can be verified 
by substitution. It should be noted that the particular solutions are in this case 
periodic. The general solution 

y{x) = Ae'' + Be-'' (30) 

can be expressed in terms of the functions sin x and cos x by apphcation 
of Euler's relation [Eq. (1-32)]. Here again, the constants of integration are 
determined by the boundary conditions imposed on the general solution. 

5.2.2. The classical harmonic oscillator 

The example presented above will now be developed, as it is a problem which 
arises frequently in many applications. The vibrations of mechanical systems 
and oscillations in electrical circuits are illustrated by the following simple 
examples. The analogous subject of molecular vibrations is treated with the 
use of matrix algebra in Chapter 9. 

Consider a physical pendulum, as represented in Fig. 1. A mass m is 
attached by a spring to a rigid support. The spring is characterized by a force 

"I-
Fig. 1 Simple mechanical oscillator. 
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constant K such that the force acting on the mass is described by Hooke's law,* 

/ = -/cjc, (31) 

where x{t) is the displacement of the mass from its equilibrium position and / 
is the force opposing this displacement (see Fig. 1).̂  Assuming that the force 
of gravity is independent of the small displacement x{t), Newton's second law 
can be written in the form 

/ = mx = —Kx. (32) 

The equation of motion is then 

x + -x = 0. (33) 
m 

In Eqs. (32) and (33) Newton's notation has been employed; the dot above a 
symbol indicates that its time derivative has been taken. Thus, ^x/dt^ = x is 
the second derivative of x with respect to time. 

Aside from a constant and some changes in notation, Eq. (33) is of the same 
form as Eq. (29). Thus, particular solutions would be expected such as =̂̂ ^̂ o?, 
where COQ = Inv^ is a constant and v^ is the natural frequency of oscillation. 
Substitution of this expression into Eq. (33) leads to the identification ay^ = 
K/m. The general solution of Eq. (33) is then of the form 

x{t) = Ae'"^' ^ Be-''''\ (34) 

where A and B are two constants of integration. An alternative form of 
Eq. (34) is obtained from Euler's relation (Section 1.6), namely, 

X = {A + B) cos coot -\-i{A — B) sin coot = C cos coot + D sin coot (35) 

and the constants C and D can also serve as the two integration constants. 
Returning to the problem illustrated in Fig. 1, the question is: How is the 

pendulum put into motion at an initial time to^ 

(i) If at r = 0̂ the mass is displaced by a distance xo, and it is not given an 
initial velocity (jto = 0),C = xo and D == 0. The solution is then given by 

X = xocos coot. (36) 

*Robert Hooke, English astronomer and mathematician (1635-1703). 

^As shown in Section 5.14, in a conservative system the force can be represented by a 
potential function. The force is then given by / = -dV(jc)/djc, where V{x) = \KX^ for this 
one-dimensional harmonic oscillator. 
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(ii) If at f = 0̂ the mass is not displaced, but an initial velocity xo = VQ is 
imparted to it, as the derivative of Eq. (35) is 

X = —CCOQ sin (Dot + DCOQ COS a>ot, (37) 

VQ = DCOQ and 

X = — sin coot. (38) 
(JL>0 

An alternative form of Eq. (35) can be obtained by substituting C = p cos a 
and D = psina. Then, 

X = p(cos a cos coQt + sin a sin coot) = p cos {coot — a ) . (39) 

The two constants of integration are now p and a, which are the amplitude 
and the phase angle, respectively. The initial conditions can be imposed as 
before. 

5.2.3 The damped oscillator 

Now suppose that the harmonic oscillator represented in Fig. 1 is immersed in 
a viscous medium. Equation (32) will then be modified to include a damping 
force which is usually assumed to be proportional to the velocity, —hx. Thus, 
the equation of motion becomes 

Jc + —i + —jc = 0, (40) 
m m 

where the constant h depends on the viscosity of the medium. 
The solution to Eq. (40) can be obtained with the substitution x{t) = z{t)e^^. 

The result is 

e^' ^ • + f 2 A + ^ ) z + (A^ + ^ + ^ ) z l = 0 . (41) 

As the factor e^^ / 0, the expression in brackets in Eq. (41) must be equal to 
zero. Furthermore, the parameter A, can be chosen so that the coefficient of z 
vanishes. Thus, X = -h/2m and Eq. (40) reduces to 

( - -
r Z = 1 

''^^--^^^'''- "'' 
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Fig. 2 Exponentially damped oscillation. 

Here, two distinct situations arise depending on the relative magnitudes of the 
two terms in parentheses. If K/m > h^/Arri^, Eq. (42) is of the same form as 
Eq. (29), whose solutions can be written as C cos a)\t -{- D sin a)\t, with co\ = 
K/m — h^/Arn^. Note that the presence of the damping term h/m modifies the 
natural (angular) frequency of the system. Then, 

X = e 
-(h/2m)t (C COS co\t -\- D sin co\t). (43) 

The two constants of integration, C and D, are determined as before by the 
initial conditions. This solution is oscillatory, although the ampUtude of the 
oscillations decreases exponentially in time, as shown in Fig. 2. 

On the other hand if K/m < h^/Am^, the equation for z{t) is of the form 
of Eq. (25) and the solutions are in terms of exponential functions of real 
arguments or hyperbolic functions. In this case x(t) is not oscillatory and will 
simply decrease exponentially with time. 

A third, very specific case occurs when K/m = h^/Am^. The system is then 
said to be critically damped. 

The mechanical problem treated above has its electrical analogy in the 
circuit shown in Fig. 3. It is composed of three elements, an inductance L, a 
capacitance C and a resistance R. If there are no other elements in the closed 

A/W^ 

Fig. 3 Damped electrical oscillator. 
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circuit, according to Kirchhoff s second law,* the sum of the voltage drops 
across each of these three elements is equal to zero. The differential equation 
is then 

L^ + Rt^^=0, (44) 
at C 

where t is the current and q is the charge on the capacitance. As the current 
is given by t = dq/dt, Eq. (44) becomes 

d^q Rdq 1 

which is of the same form as Eq. (40). Clearly, the resistance is responsible for 
the damping, while L and 1/C are analogous to the mass and force constant, 
respectively, which characterize the mechanical problem. This example will 
be treated in Chapter 11 with the use of the Laplace transform. 

5.3 THE DIFFERENTIAL OPERATOR 

The problems presented above can be solved with the use of an alternative 
method which employs operators of the type T) = d/djc. While the notion of 
operators will be developed in more detail in Chapter 7, it is sufficient here to 
point out that T) may be considered to be an abbreviation. This method can 
be applied in the case where P(x), Q(x) and R(x) in Eq. (15) are constants, 
as in the examples considered above. 

5.3.1 Harmonic oscillator 

With the use of the differential operator the equation of motion for the harmonic 
oscillator [Eq. (29)], can be expressed as 

(& + l)y = 0, (46) 

where the symbol & is understood to mean two successive applications of 
the derivative. Formally, Eq. (46) can be factored, viz. 

(i)-n){V-r2)y = 0. (47) 

*Gustav Robert Kirchhoff, German physicist (1824-1887). 
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where r\ and r2 are the roots. Clearly, if y satisfies the equation 

(i)-r,)y = 0, (48) 

its solution, y = cie^^^ is a particular solution of Eq. (46). An analogous argu­
ment for the second factor in Eq. (47) will lead to a second, independent 
particular solution of Eq. (46). The general solution is then of the form 

y = cie'^'-^ C2e'''\ (49) 

where both ri and r2 are imaginary. With the changes in notation indicated 
above, this result is equivalent to Eq. (34) for the classical harmonic oscillator. 
This method can be easily extended to the example of the damped oscillator 
(see problem 7). 

5.3.2 Inhomogeneous equations 

If the right-hand side of Eq. (15) is not equal to zero, solutions are more 
difficult to obtain. Consider a second-order equation of the form 

/ + « i y + ^2y = / ( ^ ) . (50) 

In terms of the differential operator it becomes 

(&-^aii)-^a2)y = f(x), (51) 

or 
ii)-n)(I)-r2)y = f(x). (52) 

where ri and 2̂ are the roots of the left-hand side of Eq. (51). It is con­
venient to make the substitution u = (I) — r2)y, which results in (I) — r\)u = 
f(x), a linear first-order differential equation. It can be solved by appli­
cation of the method outlined in Section 3.5. The integrating factor is then 
exp(— f r\dx) and 

The definition of u above, then leads to the relation 

(i)-r2)y = e'^'[g(x) + c,l (54) 

where g(x) = f f(x)e~^^^dx. Equation (54) can now be solved by the same 
procedure with the identification of exp(— f r2dx) as the integrating factor. 
The result is 

y = e''' f g(x)e-^''-'^^'dx -\- -^^e'^' + C2e''\ (55) 
J ri -r2 
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The coefficient in the second term on the right-hand side of Eq. (55) is a 
constant, so the sum of the second and third terms corresponds to the general 
solution of the homogeneous equation [Eq. (30)]. The first term is a particular 
integral which results from the nonzero term on the right-hand side of Eq. (50), 
i.e. the inhomogenuity. With the application of integration by parts, it can be 
written in the form 

= — ^ p ' ^ f f{x)e-'''dx - e''' I f{x)e-'''dx] (56) 

(see problem 8). 
The reader is warned that the use of differential operators may lead to diffi­

culties in certain cases. Specifically, if the coefficients appearing in Eq. (15) 
are functions of jc, the method fails. Furthermore, it must be modified if two 
(or more) roots are equal. 

5.3.3 Forced vibrations 

An important example in mechanical and electrical systems is that of forced 
oscillations of a vibrational system. If an external force f{t) is imposed on 
the mechanical oscillator considered above, Eq. (40) becomes 

h K I 
Jc + —i H- -JC = —fit). (57) 

m m m 

In practice, the right-hand side of Eq. (57) is often periodic in time, e.g. 
f(t)/m = Fosin cot. The frequency v of the applied force is equal to co/2n. 
Then, from Eq. (40) the inhomogeneous equation of interest is 

h K 
X H X H JC = Fo sin cot. (58) 

m m 

The general solution for the homogeneous part is given by Eq. (43) for the 
oscillatory (underdamped) case. The particular integral given by Eq. (56) can 
be developed as 

1 
/ = 

2u2 v2 (o'-h 

+ 
\m / 

sin cot cos cot 
m 

(59) 

The factor before the square brackets is of course the amplitude of the oscil­
lation. It reaches a maximum value when the square of the angular frequency 
of the forcing function is given by 

co' = --f-,. (60) 
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It should be noted that in the case of a damped oscillator, the condition given 
by Eq. (60) yields a resonant frequency that does not correspond to its natural 
frequency, as 

CO] = 4 - ^ , . (61) 

The expression given by Eq. (59) is of particular importance in both 
mechanical and electrical systems. In the absence of damping, the amplitude 
of the forced oscillations approaches infinity at resonance. This result has 
been the origin of a number of well-known disasters, for example the collapse 
of the Tacoma Narrows bridge in the state of Washington in 1940. The 
turbulence created by strong winds in the narrow gorge produced periodic 
oscillations of the bridge which were, unfortunately, in resonance with the 
structure. A more classic example is that of the walls of Jericho that "came 
tumbling down", so it seems, because of resonance with the sound of the 
trumpets. 

In electrical circuits the above analysis can be applied by adding an alter­
nating voltage of angular frequency o) in series with the circuit shown in 
Fig. 3. However, the results in this case are normally less dramatic. In fact 
the condition of resonance, at which 

co' = — - - ^ (62) 
LC 2L2 

allows the resonant circuit of a radio receiver, for example, to be adjusted to 
correspond to the frequency of the detected signal. Usually, it is the capaci­
tance, C, that is varied to achieve this condition. 

5.4 APPLICATIONS IN QUANTUM MECHANICS 

Most students are introduced to quantum mechanics with the study of the 
famous problem of the particle in a box. While this problem is introduced 
primarily for pedagogical reasons, it has nevertheless some important apph-
cations. In particular, it is the basis for the derivation of the translational 
partition function for a gas (Section 10.8.1) and is employed as a model for 
certain problems in solid-state physics. 

5.4.1 The particle in a box 

Consider a particle of mass m which is constrained to remain inside a one-
dimensional "box" of width I. The potential function which represents this 
system corresponds to 

f 0, 0 < X < I 
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In Other words, there is no force acting on the particle except at the "walls" 
of the box. Schrodinger's second equation* for this problem (see Chapter 7) 
is then of the form 

fi'^ d V 
- — -^^Vix)xlr = 8xlf, (64) 

where, fi = h/2n, h is Planck's constant^ and s is the energy of the single-
particle system. The symbol ^ is by tradition used to represent the wavefunc-
tion, which describes the stationary (time-independent) states of the system. 

In the interior of the box the particle is free; thus, V{x) — 0 and Eq. (64) 
becomes 

d V 0 
- 4 + a V = 0 , (65) 

where a^ = Ims/fi^. Equation (65) is clearly of the same form (aside from 
notation) as Eq. (33). One form of its general solution is then 

i/r(x) = J\.sin{ax -\- rj), (66) 

by analogy with Eq. (39). The constant a can now be identified as 2n/X, 
where A is the wavelength of a wave in the space of jc. It is known in wave 
mechanics as the deBroglie* descriptive wave, with a wavelength given by 

271 fl fl ,^„ , 
A = — = — = = — . (67) 

Of ^/2m8 mv 

In Eq. (67) the classical energy of a free particle, s = ^mv^, has been substi­
tuted, with V its velocity and mv its momentum. Equation (67) is of course 
the well-known relation of deBroglie. 

The solution of this problem, as given by Eq. (66), must now be analyzed 
with consideration of the boundary conditions ai x = 0 and x = I. Ai these 
two points the potential function, V(JC), becomes infinite. Therefore, for the 
product V(x) ^{x) in Eq. (64) to remain finite at these two points, the 
wavefunction V (̂jc) must vanish. Clearly, if ry, which is one of the arbitrary 
constants of integration, is chosen equal to zero in Eq. (66), the wavefunc­
tion will vanish at x = 0. However, at jc = £ the situation is somewhat more 
complicated. A little reflection will show that if the argument of the sine 

*Erwin Schrodinger, Austrian physicist (1887-1961). 

^Max Planck, German physicist (1858-1947). 

*Louis deBroglie, French physicist (1892-1987). 
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function is equated to nrcxji, the wavefunction will vanish at x = £ for all 
values of the integer n. The acceptable solutions to this problem are then of 
the form 

^lfn{x)=Jisin—^, (68) 

with n = 1, 2, 3 , . . . . The second constant of integration is the amplitude, J^, 
which is usually determined by normalizing V^(JC).* Thus, the amplitude in 
Eq. (68) is determined by the condition that 

J Wn(x)\^^ = ^^ j sir? ( ^ )d^ = 1, (69) 

which yields JA = y/2jl. The integral in Eq. (69) can be easily evaluated 
with the substitution sir?y = ^(1 — cos 2y). The wavefunctions for the first 
few values of n are represented in Fig. 4a. 

With T] = 0, the comparison of Eqs. (66) and (68) shows that a = nn/l, and 
from Eq. (67) the energy is given by s = h^n^/^mf-, with n = 1, 2, 3 , . . . . 
Thus, the energy of the system is quantized due to the required boundary 
conditions on the solutions. 

W) 

n = 4 

n = 3 

n = 2 

n=\ 

\|/(x) 

-ill 

n = 4 

n = 3 

n = 2 

n=l 
ill 

Fig. 4 Wavefunctions for the particle in a box: (a) without symmetry considerations; 
(b) the symmetric box. 

*The normalization condition allows the quantity i/r*(§)T/ri;(̂ )d^ to be interpreted as the 
probability of finding the particle in the region of space d§ (see Section 6.6.2). 
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5.4.2 Symmetric box 

In the above treatment of the problem of the particle in a box, no consideration 
was given to its natural symmetry. As the potential function is symmetric with 
respect to the center of the box, it is intuitively obvious that this position should 
be chosen as the origin of the abscissa. In Fig. 4b, jc = 0 at the center of the 
box and the walls are symmetrically placed at jc = ±£/2. Clearly, the analysis 
must in this case lead to the same result as above, because the particle does not 
"know" what coordinate system has been chosen! It is sufficient to replace 
jc by jc H- £/2 in the solution given by Eq. (68). This operation is a simple 
translation of the abscissa, as explained in Section 1.2. The result is shown in 
Fig. 4b, where the wave function is now given by 

iA„(x) = J2l5m ( — + — ) . (70) 

It is easily verified that Eq. (70) satisfies the boundary conditions at the walls. 
Although the net results obtained above for the particle in a box are 

physically the same, the mathematical consequences are quite different. From 
Fig. 4b it can be seen that the wavefunction is either even or odd, depending 
on the parity of n. Specifically, rj/nix) = ±V^„(—JC), where the plus sign is 
appropriate when n is odd and the minus sign when n is even. As Eq. (70) 
contains the sine of the sum of two terms, it can be rewritten in the form 

/ nnx nn nnx nn\ 
\j/n{x) — JA I sin cos h cos sin — ); (71) 

then. 

and 

ifjf\x) = ±JAcos ^ ^ if n is odd (72) 

'^^\x) = ±J\.sin if n is even. (73) 

In spectroscopic applications the letters g and u (German: Gerade, Ungerade) 
are used to specify the symmetry of the functions under the inversion 
operation, x -^ —x. Note that the normalization constant is given by J^ = 
V27?, as before. 

The symmetry properties of the wavefunctions, as given by Eqs. (72) and 
(73) are extremely useful in the evaluation of certain integrals arising in 
quantum mechanics. First of all, it is evident that 

/ xlr^^^\x)xlfj;'\dx=0 (74) 
J-e/2 
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for all values of n and n'. Other integrals of the type 

J-e/2 
\l/n(x)fix)\l/n, (X)dx (75) 

depend on the overall symmetry of the triple product in the integrand of 
Eq. (75). If the integrand is of symmetry "M", the integral is equal to zero. 
Clearly, the relations g x g = g,u x u = g and g x u = u are applicable. 
These principles, which are the bases for the determination of spectroscopic 
selection rules, are developed in Sections 8.10 and 12.3. 

5.4.3 Rectangular barrier: The tunnel effect 

A relatively simple problem which has a direct application in the theory 
of chemical reaction rates is that of the rectangular barrier. A particle of 
mass m and energy s < V approaches the barrier of height V^ from the 
left (Fig. 5). Before the encounter with the barrier the amplitude of the 
deBroglie wave is equal to A, and after reflection by the barrier it is B. The 
wavefunction in region ® , where x < 0, is then I/̂ Q = Ae^"^ + Be~^^^. 
The solution is periodic in this region, as V = 0 and a^ = 2ms/h^ > 0. 
In region (2), with s < V\ the solution is exponential, viz. lA© = Ce^^ + 
De-^\ whQve p^ = 2m{V'-6)/h^ >0. To the right of the barrier the 
solution is once again periodic, because V =0, and the wavefunction is 
of the form 1/̂ 0 = F^'"^, if it is assumed that the particle is not reflected 
at X = 00. 

® 
B 

A 

c 
^ 

D 

V' 

® 
F 

Fig. 5 Particle with a rectangular barrier. 
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At each boundary, x =0 and x = I, both the function and its derivative 
must be continuous. These conditions impose the following relations: 

and 

V^0(O) = V̂ (2)(O), 

lA@(€) = V (̂3)W, 

fdV^©" 
L djc 

"diA@1 

. djc J 

L=o 

x=t \ 

r̂ v^©! 
L djc J 

"dV^®1 
dx J 

Jx=0 

JC=€ 

(76) 

(77) 

The application of Eqs. (76) and (77) to the solutions indicated above results 
in a system of four simultaneous equations: 

(i) At X = 0, 

A-\- B = C -\- D 

iaA - iaB = fiC - fiD, (78) 

and 

(ii) Aix = i, 

(79) 

As these functions cannot be normalized, it is sufficient here to pose |Ap = 1 
and calculate the relative probability densities in each succeeding step. Then, 
R = \B\^ represents the reflection coefficient and T = | F p the transmission 
coefficient. Assuming that the particle cannot remain trapped within the barrier, 
the relation 

(80) |B|2 + | F | 2 = 1 

represents the conservation of probability density in the system [see Eq. (69)]. 
After a bit of algebra it is found that the transmission coefficient is given by 

T = 
1 

cosh^pi + 
4V/6 a J 

(81) 

sinh^pe 

Equation (81) can be verified by calculation of R = \B\^ from the simulta­
neous equations for the coefficients and substitution in Eq. (80). The result 
represented by Eq. (81) shows that the transmission coefficient decreases as 
the height V" or the thickness £ of the barrier increases. 
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The possibility that a particle with energy less than the barrier height can 
penetrate is a quantum-mechanical phenomenon known as the tunnel effect. 
A number of examples are known in physics and chemistry. The problem 
illustrated here with a rectangular barrier was used by Eyring* to estimate 
the rates of chemical reactions. It forms the basis of what is known as the 
absolute reaction-rate theory. Another, more recent example is the inversion 
of the anmionia molecule, which was exploited in the ammonia maser - the 
forerunner of the laser (see Section 9.4.1). 

5.4.4 The harmonic oscillator in quantum mechanics 

One of the most important second-order, homogeneous differential equations 
is that of Hermite.^ It arises in the quantum mechanical treatment of the 
harmonic oscillator. Schrodinger's equation for the harmonic oscillator leads 
to the differential equation 

dV ^ + (a - ^^)xlr = 0, (82) 

where T/r(̂ ) is the wavefunction and a is a constant. As a first step in the 
solution of this problem, it is useful to look for what is called the asymptotic 
solution, that is, the solution to Eq. (82) in the limit as ^^ -> oo. Since in this 
case <7 < §^, Eq. (82) reduces to 

dV 
TTTI - ? V = 0, (83) 

with approximate solutions of the form i/^(§) ^ Ce^^^^ . This function can be 
tested by consideration of its second derivative 

^ = Ce^'2^\^'±l)^C^'e^'2^\ (84) 
d^2 

This asymptotic solution suggests that the substitution V (̂̂ ) = 3-[y{^)e^^^ 
in Eq. (82) should be tried. If the resulting differential equation for 5 f (§) 
can be solved, the expression for V (̂̂ ) might be valid for all values of the 
independent variable §. 

*Henry Eyring, American physical chemist (1901-1981). 

^Charles Hermite, French mathematician (1822-1901). 
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The substitution proposed above leads to the well-known equation of 
Hermite, 

d^3-C d3-[ 

d^^ d§ 

This equation can be solved by the method described in Section 5.2.1. The 
dependent variable is developed in a power series, 

:«"(?) = ^ « „ r , (86) 
n 

by analogy with Eq. (16). Its first and second derivatives are found by term-by-
term differentiation [see Eqs. (17) and (18)]. The substitution of these results 
in Eq. (85) leads directly to the expression 

J2n(n- l)an^^-^ - 2 ^ n a , ^ ' + (a - 1) ^ ^ . ^ = 0. (87) 
n n n 

It must be emphasized that the indices n appearing in each summation in 
Eq. (87) are independent. Thus, to collect the coefficients of, say, ^^, the 
index in the first term can be advanced, independently of the indices in the 
second and third terms. If in the first term n is replaced by n -f 2, it becomes 
Xl„(« + l)(n + 2)a„+2^"- Then, Eq. (87) can be written as a function of a 
single index, namely, 

^ [(n + \){n + 2)an^2 - 2nan + (a - 1)^,] ^ = 0. (88) 
n 

Clearly, for this sum to vanish for all values of §, the coefficient in brackets 
must vanish for all values of n. Thus, 

(« + 1)(« + 2)an+2 - 2nan + (a - 1)«„ = 0 (89) 

and 
2n-a-^l 

(n + l){n + 2) 

This result is the recursion formula which allows the coefficient a„+2 to be 
calculated from the coefficient «„. Starting with either aoovai an infinite series 
can be constructed which is even or odd, respectively. These two coefficients 
are of course the two arbitrary constants in the general solution of a second-
order differential equation. If one of them, say, ao is set equal to zero, the 
remaining series will contain the constant a\ and be composed only of odd 
powers of ^. On the other hand, if ^i = 0 , the even series will result. It can 
be shown, however, that neither of these infinite series can be accepted as 
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solutions to the harmonic oscillator problem in quantum mechanics, as they 
are not convergent for large values of ^. 

The problem of convergence of the infinite series developed above can be 
circumvented by stopping the chosen series after a given finite number of 
terms. To break off the series at the term where n = v, it is sufficient to 
replace /i by f in Eq. (90) and pose 2i; — cr + 1 = 0. The coefficient ay^2 
then vanishes, yielding a polynomial of degree v. These functions are known 
as the Hermite polynomials. The factor e^^^^ introduced above will assure 
the required convergence if the negative sign is chosen in the exponent. The 
solution to Eq. (82) is then of the form \l/{^) = !Hy{^)e~^^\ where 3^v{^) is 
the Hermite polynomial of degree v. 

In the quantum mechanical application, the constant a, is proportional to s, 
the energy of the oscillator; namely, 

where h is Planck's constant and v^ is the frequency of the classical oscillator 
(see Section 5.2.2). The condition applied above, viz. 2i; — a + 1 = 0 then 
leads to the well-known result 

s = hv''{v + {), (92) 

where f = 0, 1, 2 , . . . , identified here as the degree of the Hermite polyno­
mial. It is known to spectroscopists as the vibrational quantum number. It 
should be emphasized that this quantization of the energy is not determined 
by the differential equation in question, but by the condition imposed to assure 
the acceptability of its solution. 

5.5 SPECIAL FUNCTIONS 

The Hermite polynomials introduced above represent an example of special 
functions which arise as solutions to various second-order differential 
equations. After a summary of some of the properties of these polynomials, 
a brief description of a few others will be presented. The choice is based on 
their importance in certain problems in physics and chemistry. 

5.5.1 Hermite polynomials 

While the Hermite polynomials can be developed with the use of the recursion 
formula [Eq. (90)], it is more convenient to employ one of their fundamental 
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definitions, e.g. 

,2d^e-^' 
: H ; ( ^ ) ^ ( - 1 ) V — — . (93) 

An alternative definition involves the use of a generating function. This method 
is especially convenient for the evaluation of certain integrals of the Hermite 
polynomials and can be applied to other polynomials as well. For the Hermite 
polynomials the generating function can be written as 

- ^ - ^ 1 ) 1 
. =0 ^• 

(94) 

The variable ^ is a dummy variable in the sense that it does not enter the final 
result. Thus, if the exponential function in Eq. (94) is expanded in a power 
series in s, the coefficients of successive powers of s are just the Hermite 
polynomials ^ ( ^ ) divided by v\. It is not too difficult to show that Eqs. (93) 
and (94) are equivalent definitions of the Hermite polynomials. 

Certain relations between the Hermite polynomials and their derivatives can 
be obtained from Eq. (94). First, the partial derivative of Eq. (94) with respect 
to s is 

^ = - 2 ( . - § ) 5 = f ; ^ . . - ' (95) 
ds ^ v\ 

and 

-2is-^)f:^s^ = . f : - ^ / - K (96) 

By collecting the coefficients of a given power of s, 

v=0 *-
v\ "̂  ( i ^ - l ) ! i;! 

s' =0 (97) 

As this relation is correct for all values of s, the coefficients in brackets must 
vanish. The result yields the important recursion formula for the Hermite 
polynomials, 

J/;+i(§) - 2? Jf,(§) + 2v:H,^i(^) = 0, i; = 1, 2, 3 , . . . (98) 

which is usually written in the form 

§jf , (§) = ^:?f.+i(^) + V:H:,.I(^). (99) 



106 MATHEMATICS FOR CHEMISTRY AND PHYSICS 

This relation can also be derived from the definition given by Eq. (93), which 
represents the series 

(100) 
It breaks off at (2^)" or (2^)', depending on the parity of v. Differentiation 
of Eq. (100) leads to the expressions 

^ ^ = 2v:H^.m (101) 

and 
d^^.(^) . dJf ,- i(g) 
—TZj— == 2i; — = 4v(v - l)My-2i^). (102) 

d^^ d^ 

Clearly, expressions for higher derivatives can be derived by the same method. 
Substitution of Eqs. (101) and (102) into Hermite's equation [Eq. (85)], with 
a — 1 replaced by 2v, leads to Eq. (99) (see problems 15 and 16). 

In quantum mechanics it is customary to multiply the wavefunctions intro­
duced in Eq. (82) by a normalizing factor, J%. Then, 

xlrA^) = :N,e-'2^':HA^) (103) 

and these functions form an orthonormal set for all values of ^ such that 

rAmvi^)d^ = s,,, = j ̂  |[ ;;! = ;;, (io4) 
J —c 

where the symbol 8y'^y is known as the delta of Kronecker. If the v^ ^ v, the 
integral in Eq. (104) is equal to zero and the functions are orthogonal. On the 
other hand, if v^ = v, it is equal to one and the functions are normal - hence 
the term "orthonormal". This geometrical interpretation is derived from vector 
analysis (see Section 4.3). 

Now take v' < v and consider the integral 

/

oo ^ poo d^(e~^^) 

3{A^)^fA^)e-^'d^^(-iy K'{^) ' 'd^. (105) 
-oo J -00 d § " 

Integration by parts (see Section 3.3.2) yields 

/ - ( - l ) " ^Air'^'-'' 
d§ U - 1 

_ / •°°dX>(g)d ' ' - ' (e -M 

l o o d | d ^ - ' 
(106) 
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The first term on the right-hand side of Eq. (106) vanishes, as the Gaussian 
function and its derivatives are equal to zero at § = dboo. From Eq. (101) 
d3^y'i^)/d^ = 2v':Hy'.i{^) and Eq. (106) becomes 

I = 2'\-\y^'''v'\ I 3^(^)^—^^^d^, (108) 

-oo ^S 

If this process is continued, the result is 

/

oo 

-oo 

= 2"'(-l)^+^'i;'! 

\f V = v\ Eq. (105) becomes 

/
oo /•oo 

-OO J — OO 

and Eq. (104) is verified if the normalizing factor is taken to be 

(107) 

, , .1 -\00 

v—v'—\ 
= 0. (109) 

OO 

(110) 

X = - 7 ^ = = . ( I l l ) 

Some of the Hermite polynomials and the corresponding harmonic-oscillator 
wave functions are presented in Table 1. The importance of the parity of these 
functions under the inversion operation, § ^- — § cannot be overemphasized. 

5.5.2 Associated Legendre* polynomials 

As shown in Chapter 6, these functions arise in all central-force problems, 
that is, systems composed of two interacting spherical objects in free space. 
The fundamental differential equation involved is 

where 6̂ is a constant and m = 0, ± 1 , ± 2 , . . . (see Section 6.4.2). If m is 
equal to zero, this equation can be solved by the development of P{z) in 

*Adrien-Marie Le Gendre, French mathematician (1752-1833). 
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Table 1 The Hermite polynomials and the harmonic-oscillator wavefunctions. 

^v(^) Symmetry f, = X^~^^ 'X(^) 

^ ( ? ) = 1 

^i(?) = 2? 

J ^ 2 ( ? ) = 4 ? ' - 2 

Jf3(?) = 8§3 - 12? 

Hx{^) = 16?^-48?2_^12 

5^5(?) = 32?5 - 160?^ + 120? 

J4(?) = 64?^ - 480?^ + 720?2 

a power series, as before. However, if m 7̂  0, the problem becomes more 
difficult due to the presence of the term with (1 — z^) in the denominator. At 
the points where z = ±1 this term becomes infinite. At these points, which are 
called singular points, the method of integration in series usually breaks down. 
However, if these points correspond to nonessential singularities (or regular 
points), it is often possible to avoid this problem with the use of appropriate 
substitutions. Here, with 

P{z) = (l-zyG(z) (113) 

the so-called index 5 > 0 is determined by inserting Eq. (113) in Eq. (112). 
The resulting terms in (1 — z^Y'^ = (1 — z^Y/I z^ are 

4z s(s - 1) + 4z s - m^ 4z s - m 

l-z" \-z^ = —m (114) 

With a little reflection it can be seen that the second equality results if s is 
chosen so that 4^^ = m^ or ^ = ±m/2. Thus the troublesome factor (1 — z^)~^ 
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has been eliminated. Furthermore, the condition that s >0 then imposes the 
result s = \m\/2 and Eq. (113) becomes 

P(z) = (l-z2)|m|/2(^(^)^ (115) 

The differential equation for G(z) is 

(1 - z^)^-^ - 2z(l + \m\)^^ + [^ - \m\(\m\ + l)]G(z) - 0, (116) 
dz^ dz 

which can be solved directly by the series method. 
The substitution G(z) = J2n ^nZ^ results in the relation 

Y,n{n - \)bnz''-^ -Y,n{n- DhnZ"" - 2 ^ ( 1 + |m|)n^,z" 
n n n 

+ ^ [ ) 6 - | m | ( | m | + l)]fe„z"=0. (117) 
n 

Here again the indices n are independent in each summation, so that n can 
be replaced by n + 2 in the first term. Then, by posing the coefficient of z" 
equal to zero, the recursion formula becomes 

(n + |m|)(« + |m| + l ) - ^ 
bn+2 = , ^ , , , ^ ^ , bn. (118) 

(n + l)(n + 2) 
Once again there is a problem of convergence, this time at the points z = dzl. 
It is therefore necessary to break off the series at the term n = n\ where 

P = {n' + \m\){n' + \m\ + 1) = t{i + 1). (119) 

The new integer € = n' + |m| = |m|, |m| + 1, |m| + 2 , . . . is therefore related 
to m by the condition \m\ < I or 

m = 0 , ± l , ± 2 , . . . ± £ . (120) 

It will be identified in Chapter 6 as the azimuthal quantum number, which is 
characteristic of the two-body problem. 

The associated Legendre polynomials can be defined by the generating 
function 

oo 

2l'"l( |m|)!(l-2zr + f2)l'«l+i ^f^i 
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It is analogous to the generating function for the Hermite polynomials 
[Eq. (94)], although somewhat more complicated. It can be used to obtain 
the useful recursion relations 

• p W ( . . _ . (̂  + l>^l)^N ( ^ - N I + l ) p H J22) 

(2£ + l ) ^ + ' ^ ^ {2i+\)' 
H-z'yPr-'iz) = ~-r,Pr+\(^) - 7^rrT-Pe-\(z) (123) 

and 

_ ( £ - | m | ) ( £ - | m | + l) 1̂1 

(2£ + l) "̂ ^̂ ^̂ ^ 
(124) 

(see problem 20). 
An alternative definition, but equally useful, of the associated Legendre 

polynomials is of the form 

''rW = ̂ ;^5^a^- l )^- (125) 

It is analogous to the definition of the Hermite polynomials, as given by 
Eq. (93). 

When the associated Legendre polynomials are normalized they are written 
in the form 

( 2 € + l ) ( £ - | m | ) ! „ | „ , 
0 . . ( ^ ) = , / ^ ^ ^ ^ ^ ^ ^ P r ' ( - ^ ) . (126) 

where the independent variable z has been replaced by cos 0 and the 
normalizing constant has been evaluated by much the same procedure as 
that employed for the Hermite polynomials. The functions Si,m{0) form an 
orthonormal set in the sense that 

/ @e',m(0)&i,m(0)sinOdO = 8e>^e. (127) 
Jo 

The explicit form of the normalized associated Legendre polynomials is 
given by 

t,my J 2<^! y 2 (l + \m\)\ {dcos0)^+^'"^ 
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They often appear as products of the function \ j\/ine^^"^. The angles B and (̂  
are just the two angles defined in spherical coordinates, as shown in Fig. 6-5. 
The function sin 0 appearing in the integral arises from the appropriate volume 
element. The functions 

Y^(0,(p) = Ge,mm-
1 im(p 

fin 
(129) 

are known as spherical harmonics (see Appendix III). 

5.5.3 The associated Laguerre polynomials* 

Consider the differential equation 

d^/?(p) ^ 2d/?(p) ^ 

dp2 P dp 
m + 1) R{P) = 0, (130) 

where y is a constant and £ = 0, 1, 2 . . . . As in the problem of the harmonic 
oscillator (Section 4.4.4), it is of interest to discuss first the asymptotic solution 
as p -> oo. In this limit the terms in 1/p approach zero and Eq. (130) becomes 

d^/?(p) 1 
dp2 4 

R{p) = 0. (131) 

Particular solutions to Eq. (131) are R{p) = "̂̂ ^Z ,̂ where only the negative 
exponent yields an acceptable function at infinity. This result suggests the 
substitution R{p) = e~^/^S{p), which results in the differential equation 

d'^(p) 
dp2 + e-) d^(p) 

dp 
y - 1 t{i + \) 

S{p) = 0. (132) 

This equation cannot be solved by expansion in series, as the coefficients of 
S{p) and its first derivative result in a singularity at p = 0. Because this point 
is regular, the substitution S{p) = p^£{p) is suggested. If the coefficient of 
p^ ^ is set equal to zero, the resulting indicial equation is 

Its solutions are 

2s-^s(s - l ) - £ ( £ + 1) = 0 . 

s = l , - i - l . 

(133) 

(134) 

The second solution in Eq. (134) is not compatible with the condition 5* > 0. 
Therefore, the substitution S{p) = p^£{p) is introduced into Eq. (130), leading 

*Edmond Laguerre, French mathematician (1834-1886). 
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to the differential equation 

p ^ ^ + [2(^ + 1) - P ] ^ ^ + (y - ^ - D A P ) - 0. (135) 
dp^ dp 

This equation is of the form of Eq. (15) and hence can be solved by the 
power-series expansion £(p) = J^k^kP'^- ^^^ resulting recursion formula is 

k + l + l - y ^^.^^ 

'^' / : ( / :+ l ) + 2(£ + l)(/: + l) 

Unlike the previous two examples, this is a one-term recursion formula. Hence, 
the series that is constructed from the value of ao is a particular solution of 
Eq. (135). Once again, however, because of the problem of convergence, the 
series must be terminated after a finite number of terms. The condition for it 
to break off after the term in p^ is given by 

k'-\-i-\-l-y=0, (137) 

As the integers k^ and I both begin at zero, y = 1, 2, 3 . . . can of course 
be identified as the principal quantum number n for the hydrogen atom (see 
Section 6.6.1). Thus, the quantization of the energy is due to the termination of 
the series, a condition imposed to obtain an acceptable solution. The associated 
Laguerre polynomials provide quantitative descriptions of the radial part of 
the wave functions for the hydrogen atom, as described in Appendix IV. 

5.5.4 The gamma function 

The gamma function is a generalization of the factorial introduced in 
Section 1.4. There, the notation n\ = I - 2 - 3 - 4 - .. .n was employed, with 
n a positive integer (or zero). The gamma function in this case is chosen so 
that r{n) — (n — 1)!. However, a general definition due to Euler states that 

r(z) = lim ^ ( ^ - ) ^z (138) 
n^c^z(z-\-l)-'(z + n-l) 

Several properties of the gamma function follow from this definition, e.g. 

r(z + l) = zr(z), (139) 

n\ 
r ( l ) = lim — = 1 (140) 

and, if ^ is a positive integer, 

r(n) = (n- 1)! (141) 
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as Stated above. It is also apparent that from the definition given by Eq. (138) 
that r(z) becomes infinite at z = 0, - 1 , —2, . . . , but is continuous (analytic) 
everywhere else. 

An alternative expression for the gamma function is 

/»oo 

r(z) = / e-'t'-^dt, (142) 

which is vahd when the real part of z is positive. The evaluation of some of the 
gamma functions give r(0) = oo, r ( l ) == 1, r(2) = 1, r(3) = 2!, r(4) = 3!, 
etc.. Furthermore, if r(z) is known for 0 < z < 1, r(z) can be calculated for 
all real, positive values of z with the use of Eq. (139). Finally, for half-integer 
values of the argument, starting with z = \, Eq. (142) becomes 

poo poo 

T{\) - / e-'r^'^dt = 2 / e-''dx = ^ (143) 
Jo h 

and similarly, V{\) = \4n, T(\) = | v ^ , r ( | ) = ^ V T T , etc. 

5.5.5 Bessel functions* 

Bessel's equation can be written in the form 

x^y' + xy + (x^ - k^)y = 0, (144) 

where /: is a constant. The substitution y{x) = x^ leads to the indicial equation 
£2 ^ /.2 jj^g j.QQ|-g ̂ j.g |.]̂ gĵ  _|_̂  ^ particular solution is of the form 

y = j^^jc) = y ^—^ ( - ) , (145) 
;fr^r(^ + i)r(A + /: + i) V2/ ' 

where Jk{x) is the Bessel function of order k. It can be shown that if the 
difference between the values of the two roots ±k obtained above is not an 
integer, the general solution is given by 

y{x) = AJk{x)^BJ.k{x). (146) 

Even in the case where A : = ^ , | , | , - a general solution of the type given in 
Eq. (146) can be found. In fact, this case is of particular importance in many 
physical problems, as these Bessel functions are closely related to the ordinary 
trigonometric functions. 

*Friedrich Wilhelm Bessel, German astronomer (1784-1846). 
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_ i 
To illustrate this relationship, substitute y = ux 2 in Eq. (144). The result 

is another form of Bessel's equation, namely, 

u + I l - ^ l " - o - (14^> 

In the special case in which p = ±^ Eq. (147) reduces to 

—r^u=0, (148) 

whose solution is sinusoidal [see Eq. (30)]. More generally, if p is finite, 
Eq. (147) becomes Eq. (148) in the hmit as JC ^- 00. Specifically, the Bessel 
functions of half-integer order are then given by 

[^ 
Urn y„,i(jc) = ./ — sin(x — Tynn), (149) 

x-^00 ^2 y nx 

where n is an integer. The corresponding functions of negative order are often 
referred to as Neumann functions.* Certain linear combinations of the Bessel 
and Neumann functions are known as Hankel functions.^ The reader is referred 
to advanced texts for the various recurrence relations among these functions, 
as well as their integral representations. 

5.5.6 Mathieu functions'̂  

These functions arise in a certain number of problems in electromagnetic 
theory and acoustics - in particular, those involving the vibrations of elliptical 
drum heads and the waves on approximately elliptical lakes. For the physical 
chemist, their interest is primarily in the treatment of the problem of internal 
rotation in a molecule. For example, the methyl group, CH3, can assume three 
equivalent minimal positions around the single bond with which it is attached 
to the rest of a molecule (see Section 9.4.2). In general, if a represents the 
angle of internal rotation, the potential function for the rotation of a given 
functional group can be written in a first approximation in the form 

V(a) = —(l-cosNa). (150) 

*Johann (John) von Neumann, American mathematician (1903-1957). 

^Hermann Hankel, German mathematician (1839-1873). 

^Emile Leonard Mathieu, French mathematician (1835-1890). 
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Here Â  represents the order of the rotation axis, i.e. Â  = 3 for the hindered 
rotation of a methyl group about its C3 symmetry axis (see Chapter 9). 

The Schrodinger equation for the hindered rotator can be written in the form 

21 da2 "̂  
— (1 — cos Na) xlf{a) = 0, (151) 

where / is the moment of inertia of the rotator* and s is the energy. Compari­
son of Eq. (151) with the general form of Mathieu's equation, 

d^y 
-^-\-(a- I6b cos 2x)y := 0, (152) 

yields the relations: y = \lr(a),x = Na/2, 

SI{6-{V^) ^^ IV^ 
a = z—z and b = —-

Although Eq. (152) can in principle be solved by the development of y(x) 
in a power series, the periodicity of the argument of cosine, namely, 2x = 
Na complicates the problem. The most important application of Mathieu's 
equation to internal rotation in molecules is in the analysis of the microwave 
spectra of gases and vapors. The needed solutions to equations such as 
Eq. (152) are usually obtained numerically. 

5.5.7 The hypergeometric functions 

A differential equation due to Gauss is of the form 

x(x - 1 ) ^ + [(1 + ĉ  + p)x - y]^ + a^y = 0, (153) 
dx^ ax 

where of, p and y are constants. Substitution of a power series, 3; = YlT=o ^n^^ 
leads to the one-term recursion formula 

(a + ^)(^ + n) 

(n + y){n -h 1) 

The resulting series is a particular solution to Eq. (153) known as the hyper­
geometric series. It converges for |jc| < 1. It is usually denoted as F(a,P; 
y,x). 

* Strictly speaking, / is the reduced moment of inertia for the relative rotational motion of the 
system. For the case of a relatively light rotor such as CH3 it is the moment of inertia of the 
hindered rotor that appears in Eq. (143). 
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Although the hypergeometric functions are useful in spectroscopy, as they 
describe the rotation of a symmetric top molecule (Section 9.2.4), their impor­
tance is primarily due to their generality. If, for example, a = 1 and P = y, 
Eq. (154) becomes an-\-\ = an for all values of n. The result is the ordinary 
geometric series 

y = l-^x-\-x^-\-x\.. . (155) 

If the substitution jc = ^(1 — z) is made in Eq. (153), the result is the differ­
ential equation of Legendre, with a = I + \, ^ = —I and / = 1 [see Eq. (112) 
with m = 0]. 

The Chebyshev polynomials,* which occur in quantum chemistry and in 
certain numerical applications, can be obtained from the hypergeometric func­
tions by placing a = —^, an integer, and y = ^. Finally, the hypergeometric 
functions reduce to the Jacobi polynomials^ of degree n if n = —a is a positive 
integer. 

PROBLEMS 

1. Verify that >̂  = C^2^ - 1 is a solution to Eq. (10). 

2. Derive Eq. (24). 

3. Express Eq. (28) in terms of hyperbolic functions. 

Ans. y = (A -\- B) cosh x -\- (A — B) sink x 

4. Verify that Eq. (30) is one form of the general solution to Eq. (29). 

5. Verify Eqs. (35) and (39). 

6. Show that the two particular solutions proposed for Eq. (46) are independent. 
7. Solve Eq. (45) with the use of the operator T) = d/dt and find the condition for 

critical damping. Ans. R = 2^L/C 

8. Verify Eqs. (55) and (56). 

9. Derive Eq. (59), verify Eq. (60) and show that Eq. (61) expresses the resonance 
condition. 

10. With the use of Eqs. (66) and (68) show that the energy of the particle in the 
box is given by ^ = hn^/Smi^, with n = 1, 2, 3, . . . . 

*Pafnuty Lvovich Chebyshev (or Tschebyscheff), Russian mathematician (1821-1894). 
^Carl Jacobi, German mathematician (1804-1851). 
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11. Apply Eq. (75) to evaluate /^f/2^ ^j/i(x)x^2Mdx and /^//2 ^iMx^\l/2{x)dx. 

Ans. 16£/97r2,0 

12. Derive Eq. (81). 

13. Show that ^^e~2^ is an asymptotic solution to Eq. (83) that leads to Hermite's 
equation. 

14. Derive the recursion relation for the Hermite polynomials [Eq. (90)]. 

15. Derive Eqs. (97) and (99). 

16. Develop Eqs. (101) and (102) and show that their substitution in Eq. (85) yields 
Eq. (99). 

17. With the use of Eq. (111) prove Eq. (104). 

18. Substitute Eq. (113) in Eq. (112) and derive Eq. (114). 

19. Derive the recursion relation given by Eq. (118). 

20. With the use of Eq. (121) derive Eqs. (122) to (124). 

21. Develop the indicial equation for the associated Laguerre polynomials [Eq. (133)]. 

22. Derive the recursion relation [Eq. (136)] for the associated Laguerre polynomials. 

23. Verify the relations between Eqs. (151) and (152). 

24. Substitute y = u ^ in Eq. (144) to obtain Eq. (147). 


