Appendix IV: Radial Wavefunctions for Hydrogenlike Species

The normalized radial wavefunctions for hydrogenlike atoms can be expressed by

$$R_{n,\ell}(\rho) = -\sqrt{\frac{4(n-\ell-1)!}{n^4[(n+\ell)!]^3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{2\rho}{n}\right)^{\ell} e^{-\rho/n} \mathcal{L}_{n+1}^{2\ell+1}(2\rho/n), \quad (1)$$

with $\rho = Zr/a_0$, where *r* is the radial distance, *Z* is the atomic number and a_0 is the radius of the first Bohr orbit. The associated Laguerre polynomials, $\mathcal{L}_{n+1}^{2\ell+1}(2\rho/n)$, were introduced in Section 3.4.3. Here they have been multiplied by $(2\rho/n)^{\ell}e^{-\rho/n}$, which is the appropriate integrating factor. The radial functions $R_{n,\ell}(\rho)$ are given in Table 1 for the first three "shells" of hydrogen-like species.

n	l	symbol	normalizing factor	radial function
1	0	1s	$2(Z/a_0)^{3/2}$	$e^{- ho}$
2	0	2s	$\frac{1}{2\sqrt{2}}(Z/a_0)^{3/2}$	$(2-\rho)e^{-\rho/2}$
	1	2p	$\frac{1}{2\sqrt{6}}(Z/a_0)^{3/2}$	$ ho e^{- ho/2}$
3	0	3s	$\frac{2}{81\sqrt{3}}(Z/a_0)^{3/2}$	$(27 - 18\rho + 2\rho^2)e^{-\rho/3}$
	1	3p	$\frac{4}{81\sqrt{6}}(Z/a_0)^{3/2}$	$ ho(6- ho)e^{- ho/3}$
	2	3d	$\frac{4}{81\sqrt{30}}(Z/a_0)^{3/2}$	$\rho^2 e^{- ho/3}$

 Table 1
 Some of the normalized radial wavefunctions for hydrogenlike species.