
Appendix VI: The Divergence 
Theorem 

The divergence theorem, usually attributed to Gauss, provides a relation 
between a volume V in space and the area S of the surface that bounds 
it. The theorem can be simply derived from the following argument. 

Consider an element of V along the x direction that is bounded by the xy 
and xz planes, as shown in Fig. 1. The unit vectors #ii and ^2 are the outer 
normals with respect to the ends of the volume element shown. Thus, for any 
position vector A its components along a particular outer normal are given by 
An. Furthermore, its components A^ along the x axis are functions of x. 
Thus, 

^''Midx = AJ , (1) 
ax f 

where x\ and X2 are the values of x at which the element intersects the surface 
S. If the areas of the ends of the elements are d^i and d«2. as indicated, 

djdz = —da\ cos{n\,x) -\-da2Cos{n2,x), (2) 

where {n\,x) and (/i2,Jc) are the angles between the corresponding outer 
normals and the x axis. 

If Eq. (1) is multiplied by dydz, it becomes 

/ 

2̂ dA^ , -, 
—— dx d>̂  dz = [Ajc, cos{n\,x) da\ -\- Axj cos{n2, x) da2\ X, dx 

= Ax cos(n, x)(\a, (3) 

Fig. 1 A volume element in the jc direction. 
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where da = dai +d^2- The summation of all elements in the x direction 
leads to 

/ / / —^dv= / / A;,cos(n,x)da, (4) 

V S 

with dv = dx dy dz. If this entire procedure is now repeated in the y and z 
directions, Eq. (4) can be generalized in the form 

V 

= jj [AjcCos(n,x)-\-AyCos(n,y)-\-A^cos(n,z)]da, (5) 

s 

which can be written as 

fff V 'Adv= ff A-nda, (6) 

V S 

Equation (6) expresses the divergence theorem. 
The divergence theorem has many applications. A very important case is that 

specified by Eq. (5-66), one of the four equations of Maxwell. It is specifically 

V x , ^ = 7 + g ) . (7) 

It leads directly to the equation of continuity for the charge density in a closed 
volume, viz. 

V . 7 = - ^ , (8) 
dt 

which is Eq. (5-68). 
The equation of continuity also finds application in thermodynamics, as the 

flux density of heat from an enclosed volume must be compensated by a corre­
sponding rate of temperature decrease within. Similarly, in fluid dynamics, if 
the volume contains an incompressible liquid, the flux density of flow from 
the volume results in an equivalent rate of decrease in the density within the 
enclosure. 


