
12 Approximation Methods 
in Quantum Mechanics 

12.1 THE BORN-OPPENHEIMER APPROXIMATION 

In this section the Bom-Oppenheimer approximation will be presented in 
what is necessarily a very simplified form. It has already been introduced 
without justification in Section 6.5. It is certainly the most important - and 
most satisfactory - approximation in quantum mechanics, although its rigorous 
derivation is far beyond the level of this book. Consider, therefore, the following 
argument. 

A stationary state of a polyatomic molecule can be described in quantum 
mechanics by a wavefunction V̂  and an energy s. Thus, according to Schro-
dinger, 

Hir = 6if, (1) 

where H is the total Hamiltonian of the system; it depends on the electronic, 
nuclear and spin coordinates. Thus, the Hamiltonian is a function of a large 
number of independent variables that must be separated, at least approximately, 
to obtain equations that can be solved for variables of each type. 

It is usually assumed that the spins that are included in the Hamiltonian can 
be removed. The variables involving spins of the various particles will thus 
be eliminated, and the Hamiltonian remains then a function of the positions 
of the nuclei and the electrons. 

The separation of the electronic and nuclear motions depends on the large 
difference between the mass of an electron and the mass of a nucleus. As 
the nuclei are much heavier, by a factor of at least 1800, they move much 
more slowly. Thus, to a good approximation the movement of the electrons 
in a polyatomic molecule can be assumed to take place in the environment 
of the nuclei that are fixed in a particular configuration. This argument is the 
physical basis of the Bom-Oppenheimer approximation. 

The Hamiltonian for a system composed of a number of nuclei and electrons 
can be written in the form 
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J 

where 

Vu = ''J J 
1 V- ^j^r^ 

47TS0 ..f--' ., ..jj 
JJ'^ J>J •'^ 

Vi 

and 

The first two terms in Eq. (2) represent the kinetic energy of the nuclei and 
the electrons, respectively. The remaining three terms specify the potential 
energy as a function of the interaction between the particles. Equation (3) 
expresses the potential function for the interaction of each pair of nuclei. In 
general, this sum is composed of terms that are given by Coulomb's law for 
the repulsion between particles of like charge. Similarly, Eq. (4) corresponds 
to the electron-electron repulsion. Finally, Eq. (5) is the potential function 
for the attraction between a given electron (/) and a nucleus (j). 

It is useful in the present context to separate the Hamiltonian of Eq. (2) into 
two parts, as given by 

i ^ J ^ 

It is then assumed that the wavefunction can be approximated by the relation 
yjf =z ^Ifeiec'^nuch The first three terms in Eq. (6) are referred to as the electronic 
part of the Hamiltonian, while the remaining two terms represent the nuclear 
Hamiltonian. The Schrodinger equation for the general problem can then be 
written as 

^2 ^2 

H(^elec^nucl) = - J 2 J^^^ji^eleci^nucl) " ^ —"^fi^eleci^nud) 

+ (Vjj' + Vii' -h Vij)\l/elec'^nucl = ^i^elec'^nuch 0) 

As the first term on the right-hand side of Eq. (7) expresses the kinetic energy 
of the nuclei, it is assumed that the wavefunction for the electrons is not 
modified by the corresponding operator. In other words the movement of the 
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nuclei takes place within the so-called electron cloud that is developed by the 
average positions of the ensemble of electrons. Inversely, in the second term 
of Eq. (7) the operator over the electronic coordinates has no effect on the 
nuclear wavefunction, as the nuclear positions are taken to be fixed over the 
period of time of electronic motion. 

The imposition of the above approximations on Eq. (7), followed by division 
by i^nuch leads to the relation 

"^j^nucl 1 + 
fl^ 

- ( 8 - Vjynelec = 0 . (8) 

The quantity in square brackets can be readily identified as 

^elecYelec ^ ^elecyelec^ \^) 

where s — SeUc + ^nuci- With the aid of this substitution and multiplication by 
fnud/'^eiec. the cxprcssiou 

n 2 

J \ •' 

Vj yj/nucl I + yjj'-^nucl + i^elec " £)i^nucl = 0 (10) 

is obtained. If Eq. (10) is written in the form 

(Hnucl + £elec)i^nucl = ^^nuch ( H ) 

it becomes evident that the electronic energy enters the Hamiltonian for the 
nuclear motion as an effective potential function. Thus, if the "electronic 
problem", as given by Eq. (9), has been solved as a function of the nuclear 
geometry, the resulting energy contributes to the potential function that governs 
intemuclear displacements. 

The argument presented in the preceding paragraph is perhaps easier to 
understand with reference to a diatomic molecule. In this case Eq. (9) is solved 
for each value of the (fixed) interatomic distance. The resulting electronic 
energy, as a function of this distance, is then substituted in Eq. (10) to yield the 
Schrodinger equation for the relative nuclear motion, as given by Eq. (6-70). 
The function Vjj' is just the Coulombic repulsion between the two positively 
charged nuclei, while Sgiec is the potential function that describes the forces 
created by the electron cloud. 

It should be emphasized that the Bom-Oppenheimer approximation is an 
extremely good one. Only in certain questions in the interpretation of the 
molecular spectra of small molecules in the gas phase is it necessary to 
consider its inherent errors. Therefore, it will not be considered further. There 
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are, however, other approximations that are important in many areas of physi
cal chemistry and physics. 

Several examples of the application of quantum mechanics to relatively 
simple problems have been presented in earlier chapters. In these cases it was 
possible to find solutions to the Schrodinger wave equation. Unfortunately, 
there are few others. In virtually all problems of interest in physics and chem
istry, there is no hope of finding analytical solutions, so it is essential to 
develop approximate methods. The two most important of them are certainly 
perturbation theory and the variation method. The basic mathematics of these 
two approaches will be presented here, along with some simple apphcations. 

12.2 PERTURBATION THEORY: STATIONARY STATES 

12.2.1 Nondegenerate systems 

In many problems for which no direct solution can be obtained, there is a wave 
equation which differs but slightly from one that can be solved analytically. 
As an example, consider the hydrogen atom, a problem that was resolved in 
Section 6.6. Suppose now that an electric field is applied to the atom. The 
energy levels of the atom are affected by the field, an example of the Stark 
effect.* If the field (due to the potential difference between two electrodes, for 
example) is gradually reduced, the system approaches that of the unperturbed 
hydrogen atom. 

With the experiment described above in mind, represent the Hamiltonian of 
the unperturbed system by H^ and that of the perturbed system by 

H = H^-\-XH\ (12) 

Assume that the perturbation, XH' is small compared with H^, where X is 
a parameter. As A -> 0, the eigenvalues and eigenfunctions are those of the 
unperturbed system, as given by 

«V„" = e'„r„ . (13) 

They are assumed to be known. Furthermore, it should be recalled that the 
eigenfunctions xj/^ form a complete orthogonal set. The equation of interest is 

(H^-^XH')xlfn=£n^n- (14) 

As i/r„ and Sn are both functions of X, they can be expanded in power 
series, viz. 

* Johannes Stark, German physicist (1874-1957), 
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iA, = iA„̂  + AiA^+xV: + .-. (15) 

and 
^„=£„^ + A < + A X ^ + . . . . (16) 

It will be assumed here, with reasonable assurance, that these two series 
converge. The substitution of Eqs. (15) and (16) in Eq. (13) leads to the 
relation 

= el^lrl + X{sM + ̂ ^n) + ̂ '«>.' + <fn + ̂ lO + .. 
(17) 

The coefficients of the various powers of X can now be collected to yield a 
series of equations, namely, 

X« : ^ V ° = £„V° (18) 

X':{H'-El)f'„=s'„r„-H'f'„ (19) 

X' : (H« - EIW: = e'y„ + £> ; - H>; (20) 

It has been assumed above that Eq. (18) has been solved. In principle, the 
resulting eigenvalues and eigenfunctions can then be substituted in Eq. (19) to 
yield the first-order corrections, and so on, for higher orders of approximation. 

12.2.2 First-order approximation 

To resolve Eq. (19) an expansion of i/̂ ^ is made in terms of the zero-order 
eigenf unctions. Thus, 

and 

Equation (19) is then written as 

E ad4 - ê 'A? = « - H')ft . (23) 

The orthonormal properties of the functions i/r̂  can now be employed to obtain 
the desired result. Equation (23) is multiplied by i/r̂ * and integrated over all 
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space. The left-hand side of Eq. (23) becomes 

UTJ2^eie'e-s:)irUr = J2Ms'e-^'n)hTi^^dr = 0. (24) 

The final result is obtained because if i = n, s^ — s^ = 0. Or, if £ 7̂  
n, J ifn* if I dr = 0, as the functions are orthogonal. After the same operations 
the right-hand side of Eq. (23) is given by 

j fT{s'„ - H')f:Az =s'„j ^IrTfUr - f fT H'fU^ (25) 

and, as the zero-order wavefunctions are normalized, Eq. (25) is simply 

s'„^jffH'xlf'„ dr. (26) 

This result stated in words is that e^, the first-order correction to energy of 
the system in a given state n, is just the average value of the perturbation of 
the Hamiltonian. Equation (26) can be written in the more compact notation 
of Dirac as 

s'^={n\H'\n). (27) 

It is often of interest to calculate the corresponding first-order correction to 
the wavefunctions. The necessary expression can be obtained by returning to 
Eq. (23). If this equation is now multiplied on each side by ^^* and the result 
integrated over all space, the left side will vanish, as before, unless j = I ^n. 
With the application of these conditions, the result is 

a;(£0 - el) = s'„j irf^ndr - f ff H'fUr- (28) 

As j i^n, the first term on the right-hand side of Eq. (28) is equal to zero 
and the coefficients in Eq. (21) are given by 

pO _ 0 pO _ pO ' 
(29) 

The first-order wavefunctions are then 

°°,ij\H'\n] 

p. — F"^ 

The prime on the summation in Eq. (30) indicates that the subscript j = n 
is excluded. It should be noted that the first-order energy given by Eq. (27) 
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depends only on the diagonal elements of the matrix of H'. However, the 
first-order wavefunctions given by Eq. (30) are determined by its off-diagonal 
elements. 

12.2.3 Second-order approximation 

Returning to Eq. (20), the coefficients of X^ yield the relation 

(31) 

Substitution of Eqs. (27) and (30) obtained above with the use of first-order 
perturbation theory and the expansion 

K-T^ii'l (32) 

as before, will allow Eq. (31) to be written as 

vH^1^')(>l^'h)..o ^^,(.?-.„VN-E ^f + Z '{A"' 
^r 

+<vr 

^v; 

(33) 

If this expression is multiphed by rlr^* and integrated (with the condition that 
n ^ j), the result is 

0 = 0 - ^ ^ ' \'^ I ' ' ^e: 
6^ -S^ J n 

or 

< = E' 
,{n\H^\j)[j\H'\n) 

(34) 

(35) 

12.2.4 The anharmonic oscillator 

The interatomic potential function for the diatomic molecule was described 
in Section 6.5. In the Taylor-series development of this function [Eq. (6-72)] 
cubic and higher terms were neglected in the harmonic approximation. It is 
now of interest to evaluate the importance of these so-called anharmonic terms 
with the aid of the perturbation theory outlined above. If cubic and quartic 
terms are added to Eq. (6-74), the potential function becomes 

V{x) = ^Kx^-hax^+bx^ (36) 
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where jc = r — r^. Clearly, the constants a and b are proportional to the equi
librium values of the third and fourth derivatives of the potential function, 
respectively. 

With the Hamiltonian for the harmonic oscillator, 

the Schrodinger equation leads to the solutions in Hermite polynomials (see 
Section 5.5.1). The zero-order wavefunctions are then 

xlf'„ = :N-nK(^)e-'2^\ (38) 

where ^ = Inxy/v^m/fi = ^ x , s^ = hv^ [n -\- ^) and J^ is given by 
Eq. (5-111). The anharmonicity will now be considered as a perturbation, 
with H^ = ax^ + bx"^. With the use of Eq. (27) the first-order correction to 
the energy is equal to 

in\H'\n\ = a {n\x^\n) + b {n\x^\n). (39) 

The evaluation of the matrix elements in Eq. (39) proceeds as follows. 
First of all, consider the parity of the integrands. In the first term on the 

right-hand side of Eq. (39) both wavefunctions are either odd or even, thus 
their product is always even, while x^ is of course odd. The integral between 
symmetric limits of the resulting odd function of x vanishes and this term 
makes no contribution to the first-order perturbation. On the other hand the 
second term is different from zero, as x"^ is an even function. 

The matrix elements of x^ can be evaluated with the use of the recursion 
relation developed in Section 5.5.1 for the Hermite polynomials (See Appendix 
IX). In the notation employed here Eq. (5-99) becomes 

^K(^) = i j f „+ i (? )+«J f ,_ i (§ ) . (40) 

Multiplication of Eq. (40) by § yields 

^^K(^) = ^^^:Hn^d^)-^n^:Hn-m. (41) 

Equation (40) is then applied twice, e.g. with « ^- w + 1 to give 

§jf ,+i(?) = ^Jf,+2(?) + (« + 1)^«(§), (42) 

and similarly with n ^^ n — I, to yield 

^^K(^) = \:Hn^2{^) + {n + \) :Hn{^) + n{n - l)K-2(^)^ (43) 
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The square of Eq. (43) is given by 

?X2(§) = ̂ ,:K,\,(^) + (n + {f :H^{H) + n\n - \f:Hl^{^) + ^, 
(44) 

where & represents the cross terms which will vanish on integration due to 
the orthogonality of the wavefunctions. The second term on the right-hand 
side of Eq. (39) can be written in the form 

b[n\x\n) = -3^^ \ e-^ ?X'(?)d^ (45) 

With the substitution of Eq. (44) in the integrand, Eq. (45) becomes 

1 . / . 1x2 

a^ 

3b 

1 , (« + 5) , n^in- 1)^ 
+ -̂̂  ^^ + (46) 

(problem 7). Thus, the first-order correction to the energy as a result of anhar-
monicity is proportional to the coefficient b and is quadratic in the vibrational 
quantum number n. 

It was shown above that the cubic term in the potential function for the 
anharmonic oscillator cannot, for reasons of symmetry, contribute to a first-
order perturbation. However, if the matrix elements of ^ ' = ax^ are eval
uated, it is found that this term results in a second-order correction to the 
energy. The appropriate matrix elements in Eq. (35) must then be evalu
ated. 

The only nonvanishing matrix elements of jĉ  are those with j = n±l 
and j = n±3. This result is obtained by repeated application of Eq. (40), as 
before. Thus, there are four terms that the cubic potential constant contributes 
to the second-order energy correction, Eq. (35). The final result can be written 
as 

15«2 / 11 \ i5a^ r 2 17 

"̂ = 4 ^ 5 ^ r +"+30) = 4 ^ ^ K"-"^) +60 
(48) 

(problem 8). This expression, plus the first-order correction given by Eq. (47), 
indicates that the anharmonicity of the oscillator can be represented in this 
approximation by a quadratic term in the vibrational quantum number. The 
vibrational spectra of diatomic molecules are usually interpreted with the addi
tion of an anharmonic term that is proportional to (n 4- ^) .It should be noted 
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that the appHcation of perturbation theory yields, in addition, a small correction 
to the zero-point energy. 

12.2.5 Degenerate systems 

The first-order perturbation theory developed in Section 12.2.2 cannot be 
employed if the energy level of the unperturbed system is degenerate. In 
Eq. (12) it was assumed that the perturbed wavefunction i/̂ „ differed but 
slightly from a particular zero-order wavefunction, i//^. However, if the energy 
level 6^ is a-fold degenerate, there are a linearly independent wavefunctions 
that satisfy the wave equation for the unperturbed system. Each of these func
tions is orthogonal to all wavefunctions corresponding to other energy levels. 
However, they are not necessarily orthogonal to each other. 

The simplest example is that of a doubly degenerate level, for which 
H^ij/l^ =6^}//^^ and H^'^^2 — ̂ k^ki- Clearly, any linear combination of 
the two wavefunctions is also a solution, as 

H^ici fl, + C2xlrl^) = eO(c, V ,̂", + C2fl^). (49) 

In general, if ak is the degree of degeneracy, ak linear combinations of the 
zero-order wavefunctions can be constructed, 

oik 

xli = Y.'ijKj / = l ,2 ,3 , . . . , a , . (50) 
7 = 1 

They are also correct wavefunctions for the zero-order problem. The coeffi
cients can of course be chosen to normalize each result. 

Consider a first-order perturbation. The Hamiltonian for the perturbed system 
is again as given hy H = H^ -\- kH' [Eq. (12)], but the Schrodinger equation 
is of the form 

Hi^k,j =£kjfkj . (51) 

Thus, the effect of the perturbation may be to remove (all or partially) the 
degeneracies of the unperturbed energy levels. As the perturbation diminishes 
(X -> 0), xl/icj -^ Xk,i ^^^ ^kj -^ ^k' Thus, for the perturbed system, 

V ^ U = X u + ^ ^ M (52) 

and 
Sk,i = ^^ + A4 . . (53) 

The first-order approximation (equating coefficients of X) yields the relation 

^V;,,- + H'xl, = slir'u + s'.jxli • (54) 
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Following the procedure of Section 12.2.2, the expansion 

kj 

297 

(55) 

is made in terms of the zero-order wavefunctions. Note that the double summa
tion has been employed in Eq. (55) to take into account all wavefunctions 
associated with a given unperturbed energy level, as well as all energy levels. 

Substitution of Eqs. (52) and (53) in Eq. (51) leads to 

k'j j 

which, when multiplied by \l/^\ and integrated over all space becomes 

(56) 

or 

J^Cij [{n \H^\ j) - 4,/ {n\j)] = 0 , / = 1, 2, 3,.. . . , Oik . 

(57) 

(58) 
; = i 

This result is a system of simultaneous linear, homogeneous equations for the 
coefficients, cij. Cramer's rule states that a nontrivial solution exists only if 
the determinant of the coefficients vanishes (see Section 7.8). Thus, 

[n\H'\j)-8l.{n\j) = 0, / = 1 , 2 , 3 , . . . , Q f ; t . (59) 

The determinant in Eq. (59) is of course a secular determinant, a descrip
tion that refers to its application to the temporal evolution of a mechanical 
system, historically in astronomy. It will re-appear later in this chapter in the 
development of the variation method. 

The secular determinant as presented above involves the first-order pertur
bations of the Hamiltonian and the energy. More generally, it is formulated in 
terms of the Hamiltonian and the total energies of the perturbed system. From 
Eqs. (12) and (16), 

and 

n\H'\j) = {n\H''\j) + {n\H'\j) 

Sk,i {n\j) = s^^ {n\j)-\-sli {n\j). 

(60) 

(61) 
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Their difference, when substituted in Eq. (58) leads to the secular determinant 
in its more usual form, viz. 

{^\^\j) n-^kj {n\j) = 0, / = 1, 2, 3, . . . , ak. (62) 

12.2.6 The Stark effect of the hydrogen atom 

Consider a hydrogen atom under the influence of an electric field, c?. The 
perturbation energy is given by H' — —ft • c?, where fi is the instantaneous 
dipole moment of the atom. For simplicity, assume that the electric field is 
directed along the z axis. The perturbation in this case then given by 

H' = ez£z = e6\jcosO, (63) 

where e is the electronic charge. 
The ground state of the hydrogen atom is nondegenerate and the wave-

function is 

1̂ 1,0,0 = —^=Ruo, (64) 
/47r 

with the radial part given by 

/?i,o = 2% ' e ^/'^^-r/ao (65) 

The result of first-order perturbation theory, as given by Eq. (27), is applicable. 

Clearly, the matrix element vanishes, as J^ cos 0 sin 0 

dO = 0. Thus, there is no first-order Stark effect for the hydrogen atom in 
the ground state. 

However, in the first excited state the degree of degeneracy is equal to 
four. Hence, the first-order perturbation calculation requires the application 
of Eq. (62). The wavefunctions for the first excited state can be written in 
the form 

V^2,0,0 

V^2,l,0 

V^l,l,l 

V^l , l , -1 

— 

= 

= 

= 

V 4 7 r 

V4^^^'^ 

V4^^^'>' 

V An 

cosO 

sinO-^e^^ 

V2 
1 

1 sin 0—=e 
V2 

(66) 
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where the radial parts are given by 

- 3 /2 

^2,0 = 

^2,1 

- 3 /2 

2\/6 «o 

U-L) -^/2o 

- / 2o (67) 

In Eqs. (67) the quantity ao is the radius of the first Bohr orbit (see Section 6.6). 
The matrix elements in Eq. (62) are of two types. The diagonal elements 

involve integrals over 0, all of which vanish. Furthermore, of the off-diagonal 

elements, only /2, 0, 0 IH^I 2, 1, o\ = /2, 1, 0 l^'l 2, 0, o\ = -3^c?,^o are non
zero, as all integrals involving q) vanish. The secular determinant then takes 
the form 

- ^ 2 
—3e£^ao 

0 
0 

—3e<f>,ao 

-^2 
0 
0 

0 
0 
0 
0 

0 
0 

-s'-, 
0 

0 
0 
0 

—e 

= 0 (68) 

and the energies of the perturbed levels are obtained as the roots of the 
expression 

s'^is'^ - 9e^£lal) = 0 (69) 

r^2 

Fig. 1 The Stark effect of the hydrogen atom. 
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(problem 11). These results are represent in Fig. 1. Note that two of the levels 
are not perturbed by the applied electric field and their degeneracy is not 
removed. They correspond to atomic orbitals px and py, whose maxima He 
in the horizontal plane, that is, perpendicular to the direction of the applied 
field (see Appendix III). 

12.3 TIME-DEPENDENT PERTURBATIONS 

12.3.1 The Schrodinger equation 

To discuss the problem of the interaction of light with an atomic or molecular 
system, it is essential to consider those perturbations which are functions of 
time. It is such perturbations that provoke transitions from one stationary 
state to another in a given system. Thus, specifically, it is the time-dependent 
Schrodinger equation that must be considered. It can be written in the form 

H^(quq2,'";t) = ifi , (70) 
ot 

where the Hamiltonian is now a function of time, as well as all of the coor
dinates of the system. 

The separation of the time from the spatial variables can be carried out by 
the method introduced in Section 6.1.2. Thus, it is sufficient to write 

^ ( ^ i , ^ 2 , - - - ; 0 = V^(^i,^2,---)?>(0 (71) 

to separate the time from the space variables. The result is given by 

^ ( ^ 1 , ^2, • • •; 0 = i^iquqi, • • •)^~"^' / ' . (72) 

In the problem of interest here, the Hamiltonian in Eq. (62) can be decom
posed into a time-independent, unperturbed part H^ and a much smaller, 
time-dependent operator H\t). Then, the Hamiltonian becomes to first order 

H^-\-H\t). (73) 

The stationary states of the system are described by the eigenfunctions i/zk and 
the eigenvalues Sk of the unperturbed Hamiltonian. 

The eigenfunctions x/fk form a complete set; thus, the wavefunction 
^ ( ^ 1 . ^2, • • •; 0 can be expanded in terms of the wavefunctions xj/k, with the 
use of the time-dependent coefficients bk{t). The resulting expression is then 

^(quqi, • • •; 0 - ^^^(OiA^-"^^ / ' (74) 
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which can be substituted into the time-dependent Schrodinger equation to yield 

Y,h{t)H'mue-^^^'i^ = in Y, ^tA*^-'^*'/^ (75) 
k k 

MultipUcation by V *̂ and integration over the spatial coordinates results in 
the set of differential equations for the coefficients, 

dMO 
dt = ~^I]^^(^)('̂ | '̂̂ ^)|^) '̂̂ ''~''" '̂̂ ^- (76) 

It should be noted that in the general case each term in the summation contains 
three time-dependent factors. Thus, to reduce the complexity of the presenta
tion, only a very simple example will be considered here. 

Suppose that at a time r = 0, the stationary state of the system is known. 
That is to say that both its energy £„ and the corresponding (nondegenerate) 
wavefunction V̂„ have been determined. Therefore, for ^ < 0, all of the coeffi
cients in Eq. (76) are equal to zero, except of course, /?„ = 1, which identifies 
the initial state of the system. It is often the ground state, although not neces
sarily. A perturbation is then applied at r = 0. It is then assumed that it is 
sufficiently weak so that the coefficient bn does not vary significantly from 
its initial value of unity over the relatively short duration of the perturbation. 
With these conditions Eq. (76) can be reduced to 

dbm{t) i 
= —- (m /m|H'(0|«)^"^'""' '"^'/^ (77) 

dt n 

Normally, the energy difference between the initial and final states, as given 
in Eq. (77), is equated to conmfi, where Vnm = o)nm/^^ is the frequency of the 
transition from the initial state k = n to the final state m. 

12.3.2 Interaction of light and matter 

The problem of particular interest in physics and chemistry is concerned with 
the interaction of electromagnetic radiation, and light in particular, with matter. 
The electric field of the radiation can directly perturb an atomic or molecular 
system. Then, as in the Stark effect, the energy of interaction - the perturba
tion - is given by 

H' = -fi- c?, (78) 

where fi is the dipole moment of the system. For simplicity it will be assumed 
that the light incident on the system is polarized in a particular direction, say 
X. Then, Eq. (78) becomes simply 

H' = -M.c?. . (79) 



302 MATHEMATICS FOR CHEMISTRY AND PHYSICS 

If the incident radiation is monochromatic with a frequency v = a)/2n, as in 
a laser beam, its electric field can be represented by 

O r — O ^ COS cot, (80) 

where £^ is the amplitude of the incident radiation. The corresponding compo
nent (jc) of the dipole moment of the system can be written in the form 

Mx = ^eiXi (81) 

where ei is the charge on each particle, and JC/ is its position in the x direction. 
Then the perturbation is given by 

H' = -iXjc(S^ = -6\^eiXi (82) 

and the matrix elements in Eq. (77) are 

Im \H\t)\n] = -(S^^coscot^Ci {m |/x/|n) = -(^^ cos cot {m \ijix\n). (83) 

The time dependence is in this case due to the oscillation of the imposed 
electric field as given by Eq. (80), as well as the displacement of the charged 
particles, electrons and nuclei within the atomic or molecular system. 

The expression for the matrix elements given by Eq. (83) is substituted in 
Eq. (77). The result is 

^ ^ = ^<S^, COS cot (m \nAn) e'"""-'. (84) 

The exponential form of cos cot, as given in Eq. (1-36), is then substituted to 
obtain 

dMO 
df 

= —c5^ (m IMJ n) [e"'*'"--")' + e-'<"'-+<">'] (85) 
2n 

which can be easily integrated if the matrix element (m l/Xĵ  | n) does not change 
significantly during the short time of the perturbation. Then, with the initial 
condition that bm = 0 ai t = 0, integration yields the time-dependent coeffi
cient 

bm(t) = in 
^-i{(Onm-(^)t _ \ ^-i{(Onm-^)t _ \ 

+ 
0)n CO COnm +<W 

(86) 

As the frequency of the incident electromagnetic radiation approaches that of 
the transition n ^- m, the first term in the brackets of Eq. (86) dominates; it 
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becomes very large at resonance.* Thus, the second term in Eq. (79) can be 
neglected in the spectral region of interest, and the resulting expression for 
the probability of a transition to the state m can be written as (see problems 
14 and 15) 

bmb: 
<^. \{m\ixAn\ \^t' 

4h' 

sin [(a)n 

[((^nn 

-co)t/2]] 

(o)t/2f J 
(87) 

The expression in brackets in Eq. (87) is of the form {sin JC/JC)^, where x = 
((^nm — co)t/2. Thus, for a given time t for the duration of the perturbation, the 
spectrum, e.g. the transition probability as a function of the angular frequency 
0) is as shown in Fig. 2. The width at half-maximum of this spectral feature 
is represented by A for a given value of the time, t. If, for example, the 
perturbation time is increased by a factor of four, the width of the spectral 
distribution is reduced by the same factor, as shown by the solid line in Fig. 2. 
Equation (87) expresses the probability that the system, initially in the state 
k = n, will be in the state m after a sinusoidal perturbation over a relatively 
short period of time t. 

Now to calculate the transition probability in the case in which all frequen
cies y = co/ln are incident on the molecule, Eq. (87) must be integrated over 
the frequency range. As the significant frequency variation is due to the factor 

x = 0 

Fig. 2 The function (sin xjxf- = sinc^x, where x = (conm — (o)t/2 and t is the dura
tion of the perturbation. The width of the frequency distribution is equal to A, which 
is proportional to l/t. 

*Note, however, that it does not become infinite, as lima-^o[(e'"^ - l)/a] = it. 
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in brackets, its integration leads to the approximate expression 

|2 

\{m\iiAn)\'t. (88) 
n c?? 

2^2 

The quantity \bm\^ represents the probabiUty of the transition m ^^ n. Clearly, 
the number of transitions per unit time depends on the intensity of the incident 
radiation, which is proportional to ICJ.'^P, and the square of the matrix element 
(m\fix\n). The latter determines the selection rules for spectroscopic transitions 
(see the following section). 

The result obtained as Eq. (88) can be generalized for the case of isotropic 
radiation. The light intensity is then proportional to 

|c5 |̂2 = |^,^|2 + |/,^|2 + | ^ | 2 ^ (89) 

which is in turn proportional to the radiation density, p. The square of the 
matrix elements of the dipole-moment vector are given by 

I {mMn) |2 = I (m|/xjn) \^ + | {m\fiy\n) \^ + | (m|/x,|«) |^ (90) 

which depends on the molecular orientation. It determines the value of the 
Einstein coefficient for absorption, which is given by 

2n 

(47T£o)3cfl^ 
Bm^n = .. ^ 1 , 2 ! ^'^I/^I'^) I'- (^1) 

The quantity {m\fi\n) is known as the transition (dipole) moment. 
In the above rather simplified analysis of the interaction of Hght and matter, 

it was assumed that the process involved was the absorption of light due to a 
transition m ^^ n. However, the same result is obtained for the case of light 
emission stimulated by the electromagnetic radiation, which is the result of a 
transition m -^ n. Then the Einstein coefficients for absorption and stimulated 
emission are identical, viz. B^^n = ^m^n-

An important process has not been included in the analysis. It is the possi
bility of spontaneous emission. Were it not for such a process, in the absence of 
electromagnetic radiation a molecule in the excited state m would be forced 
to remain there forever. Thus, in Einstein's analysis of this problem three 
competing processes were considered to be in equilibrium, leading to the 
expression 

Nm . (92) 

The left-hand side of Eq. (92) represents the number of transitions per unit 
time due to absorption of light. The first term on the right-hand side of Eq. (92) 
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is due to stimulated emission, while the second term, which remains in the 
absence of electromagnetic radiation, takes into account the possibility of 
spontaneous emission. As an equation, this relation expresses the balance 
between these processes. Furthermore, at equilibrium the relative populations 
of the upper and lower states is determined by the Boltzmann distribution 
law, 

(see Chapter 10). Substitution of Eq. (93) into Eq. (92) yields the relations 
between the Einstein coefficients 

_ 2 ^ _ 2 ^ 

It is important to note that all three coefficients depend on the matrix elements 
of the dipole moment, as expressed by Eq. (90). 

12.3.3 Spectroscopic selection rules 

General selection rules that govern spectroscopic transitions are derived from 
the symmetry properties of the dipole moment and the wavefunctions involved. 
The transition moments can be expressed in general by 

[m\iij\n)= / xlf^^fijxlfn dr, (95) 

where j =x,y,z identifies space-fixed Cartesian coordinates and V̂ ^ and 
'ij/n are the wavefunctions for the states involved in the transition. If any 
such integral is nonzero, from Eq. (90) it is evident that these transitions are 
possible. The so-called selection rules are just the answer to the question: Is 
the transition moment {m\ii\n) equal to zero? If so, transitions between the 
states m and n are forbidden. 

The determination of general selection rules can be made by consider
ation of the symmetry of the integrand in Eq. (95). For example, it was 
shown in Section 3.4.5 that the integral over an odd function vanishes. The 
corresponding group-theoretical expression of this principle was outlined in 
Section 8.10. The integrand in Eq. (95) is the product of three functions. Thus, 
if each is characterized by a representation, the direct product provides the 
needed information concerning the symmetry of the resulting function. In the 
simplest case each factor may belong to a particular irreducible representation. 
Then, the resulting direct product can be expressed as 
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The right-hand side of Eq. (96) is of course the weighted direct sum of the 
irreducible representations. By convention the totally symmetric irreducible 
representation corresponds to £ = 1. Thus, if n̂ ^̂  = 0, the integral in Eq. (95) 
vanishes. The transitions m -^ nandm ^e-/i are then forbidden by the symmetry 
selection rules. This principle can be illustrated by the following example. 

Consider a molecular system of symmetry 6*2^, whose character table is 
given in Table 8-11. The irreducible representations for the components of the 
dipole moment can be easily established, or even read directly from the table. 
Thus Vj^^ can be identified as Ai, Bi or B2 for j =z,x or y, respectively. 

Then, if the direct product r^ ^ 0 T^̂  ^ contains any of these three irreducible 
representations, the transitions m ^^ n and m ^(^ n axQ allowed. Furthermore, 
the polarization of optical transitions can be specified, as each Fj corresponds 
to a specific polarization direction. 

The selection rules illustrated above are general, as they depend only on 
the symmetry properties of the functions involved. However, more limiting, 
selection rules depend on the form of the wavefunctions involved. A relatively 
simple example of the development of specific selection rules is provided by 
the harmonic oscillator. The solution of this problem in quantum mechanics, 
as treated in Section 5.4.4, leads to the wavefunctions given by Eq. (5-103) 
and the energy levels defined by Eq. (5-92). These results were employed in 
Section 5.4.4 to describe in a first approximation the vibration of a diatomic 
molecule. As before, the possibility of transitions between the various energy 
levels of the system is determined by the matrix elements of the dipole 
moment. 

If r is the intemuclear distance in a diatomic molecule and ^ = r — r^, the 
dipole moment can be developed in a series in the form 

Vdx/o 
/x = / x o + f ^ j x + . . . . (97) 

The first term on the right-hand side of Eq. (97) is the permanent dipole 
moment. The second term expresses the change in dipole moment with inter-
nuclear distance. Often, higher terms are neglected. The derivative (d/x/dx)o 
can then be interpreted as an effective charge carried by the vibrating nuclei. 
The change in intemuclear distance is related to the independent variable 
employed in Section 5.5.1 by ^ = Inx^v^mlh, where m is now the reduced 
mass of the diatomic molecule and v^ = ^/kjm/27t is the classical frequency 
of vibration. 

The transition moment of interest for process v^ -^ v, is then 

{v'\fM\v)^L'Lo + (^] x\v\ = ,xo{v'\v)+(^) {v'\x\v). (98) 
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For a polar molecule (/XQ 7̂  0) the first term on the far right is nonzero only 
if the initial and final vibrational states are the same, viz. v = v\ This case 
applies to the pure rotational spectra of gaseous molecules, as observed in 
the microwave region. The second term in Eq. (98) applies to vibrational 
transitions. The matrix elements of interest are (U^IJCIU), which are given by 

{v\x\v)=:a-^/^{v'\^\v) 

/

+00 ^ 

-00 

To determine the selection rules in this case it is sufficient to recall the relations 
developed in Section 5.5.1 between the Hermite polynomials. Specifically, 
Eq. (5-99) can be rewritten in the form 

? Jf,(§) = ^ Jf,+i(§) + i;:^.-i(?). (100) 

With its substitution in Eq. (99) it becomes evident from the orthogonahty of 
the Hermite polynomials, that all matrix elements are equal to zero, with the 
exception of f̂  = i; — 1 and v' = v -\- I. Thus, the selection rule for vibrational 
transitions (in the harmonic approximation) is Av = ±\. It is not neces
sary to evaluate the matrix elements unless there is an interest in calcu
lating the intensities of spectral features resulting from vibrational transitions 
(see problem 18). It should be evident that transitions such as Av = ±3 are 
forbidden under this more restrictive selection rule, although they are permitted 
under the symmetry selection rule developed in the previous paragraphs. 

As a second example of the determination of selection rules from the prop
erties of special functions, consider the hydrogen atom. At any given instant 
the dipole moment is ft = er, where r describes the position of the electron 
with respect to the proton and e is the electronic charge. The wavefunctions 
for the hydrogen atom are given by 

^n,l,m = RnAr)^Lm{C0S ^ ) e ' ' " ^ (101) 

where the angular-dependent factor is given by Eq. (6-69). If the incident 
light is polarized in, say, the z direction, the matrix elements of interest are 
of the form 

{n\ l\ m' |/x,| A2, l,m) = e {n , t\ m \r cose\n, I, m) 

= e {n\ i' \r\ n, i){l\ m \cose\l, m) {m\m).(102) 

The factor that depends on the radial wavefunctions is in general nonzero. The 
factor in (p contributes to the integral 

[m'\m) = ^ r ^ - ' ( - ' - ^ dip = 8m',m , (103) 
' 27T Jo 
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which imposes the condition Am = 0, or the integral vanishes. The ^-dependent 
part of Eq. (102) can be evaluated from the recursion relations for the associated 
Legendre polynomials. For this example Eq. (5-122) can be written as 

(104) 
which leads directly to the selection rule Al = ± 1. 

For light polarized in the x ov y directions, the procedure followed in 
the preceding paragraph can be employed with /Xjc = ^x = er sin 0 cos (p and 
/jiy = ey = er sin 0 sin (p. Then, it is apparent that Am = ±1 and with the aid 
of Eqs. (5-123) and (5-124) the selection rule A£ = ±1 can be easily estab
lished (see problem 19). In conclusion the selection rules for the absorption 
of unpolarized hght are Am = 0, ±1 and A£ = ± 1 . 

12.4 THE VARIATION METHOD 

A different approach to obtaining approximation solutions to quantum mech
anical problems is provided by the variation method. It is particularly useful 
when there is no closely related problem that yields exact solutions. The 
perturbation method is not applicable in such a case. 

The variation method is usually employed to determine an approximate 
value of the lowest energy state (the ground state) of a given atomic or molec
ular system. It can, furthermore, be extended to the calculation of energy levels 
of excited states. It forms the basis of molecular orbital theory and that which 
is often referred to (incorrectly) as "theoretical chemistry". 

12.4.1 The variation theorem 

Given an. acceptable, normalized function </>, if the lowest eigenvalue of the 
Hamiltonian H is ^o, then 

= / * * W = I (p^Hcpdr >eo. (105) 

which is the variation theorem. This relation may be a bit surprising, as the 
function 0 can be any normalized function of the coordinates of the system that 
satisfies the conditions for an acceptable wavefunction. Although the function 
(p is arbitrary, the more wisely it is chosen the more closely will W approach 
6:0, the true energy of the ground state of the system. Thus, if 0 were chosen 
to be the correct ground-state wavefunction, \l/o, Eq. (105) would yield the 
energy of the ground state. 
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As a simple proof of the variational theorem, consider the case in which 
(f) ^ x/fQ. The variational function can be expanded in terms of the complete 
set of normalized, orthogonal functions V̂ „. Thus, 

(t> = J2anXlr„ , (106) 
n 

with 
^ « * « . = 1. (107) 

Substitution of this expansion in the integral for W [Eq. (103)] leads to the 
equation 

W = ^ ^ a > n ' I xlf^^HxIfn'dr - ^ « * a , £ , , (108) 
n n' -^ n 

as the functions i/r„ satisfy the equation 

Hylfn^Sn^n • (109) 

The energy of the ground state, ^o is then subtracted from each side of 
Eq. (108) to yield 

W-8^ = Y,a^an{Sn-s^). (110) 
n 

where Eq. (107) has been employed. 
As Sn is greater than ^o for all values of /t, and the coefficients a^an are 

of course positive or zero, the right-hand side of Eq. (108) is positive or zero. 
It has thus been shown that W is always an upper limit to 8Q, the true energy 
of the ground state of the system; thus, 

W>£o. ( I l l ) 

Equation (111) is a statement of the variational theorem. 
If several variation functions, 01, 02, 0 3 , . . . are chosen and the corresponding 

values of the variational energy, Wi, W2, VV's,... are calculated from Eq. (103), 
each of these values of W will be greater than the true energy of the ground 
state, ^0- Thus, the lowest one is nearest ^o- Iî  many cases it is convenient to 
employ a variational function that contains one or more parameters. Then the 
resulting expression for W can be minimized with respect to the parameters. 

12.4.2 An example: The particle in a box 

The one-dimensional problem of the particle in a box was treated in Section 5.4.1. 
Exact solutions were obtained, which were then restricted by the boundary condi
tions V (̂0) = xl/(l) = 0. If the exact solutions were not known, the problem 
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might be attacked with the use of a simple variation function which satisfies the 
boundary conditions. As an example, take 

(t) = j\rx(i-x), (112) 

which vanishes at each side of the box. The normalization constant can be 
evaluated from the relation 

f (l)^d(P = J^^ f x\i-xfdx = J^^i^/30, (113) 
Jo Jo 

which leads to :Ar = v W ^ (problem 21). 
In the interior of the box V(x) = 0 and the Hamiltonian is simply 

. _ fi^ d \ 

2m djc^' 

then, Eq. (105) becomes 

h^ 30 r^ d̂  5h^ 
^ = - ^ ^ 7 ^ x ( € - x ) — [ x ( £ - x ) ] d x = - ^ - ^ . (115) 

Sn^m P Jo dx^ 4n^mP 
The true energy of the ground state was found in Section 5.4.1 to be equal to 
6i = h/^ml^. Its comparison with Eq. (108) is 

_10 [ h^ \ 

and the error is in this case approximately 2%. 
Although the variational theorem was expressed in Eq. ( I l l ) with respect 

to the ground state of the system, it is possible to apply it to higher, so-
called excited, states. As an example, consider again the particle in a box. In 
Section 5.4.2 a change in coordinate was made in order to apply symmetry 
considerations. Thus, the potential function was written as 

fo, -U<x<U 
V(x)=\ 1 , • (117) 

It is an even function of x and the solutions can be classified as even or odd 
(Gerade or Ungerade), as given in Eqs. (5-72) and (5-73). It should be noted 
that the ground state in this case is symmetric. It is then of interest to choose 
a variation function that is antisymmetric (u) to determine the energy of the 
first excited state n = 2, which is antisymmetric. As an example, consider the 
variational function 

(p = J^x(l/2 + x)(l/2 -x) = J^x [(f/4) - x^], (118) 
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which is Ungerade. The normahzation leads to the factor JV" = ^840/^'^ (see 
problem 21). The variational energy is then given by 

where on the right-hand side the factor A = n^ specifies the first excited 
state, n = 2. 

12.4.3 Linear variation functions 

It is often convenient to employ a variation function that it is a linear combi
nation of suitably chosen functions Xn\ thus, 

0-E^«^- (12^) 

It should be noted that the functions Xn need not necessarily form an 
orthonormal set. The linearly independent coefficients c„ can be considered to 
be variable parameters that are determined by minimization of the variational 
energy, W. If the functions Xn are not orthonormal, Eq. (105) can be rewritten 
in the form 

/(/>*0dr 

The variational energy is then given by 

E:E':c*c„{n'\H\n) 
W 

TrnTrn'C*.cAn'\n) 
(122) 

where («'|// |n) = / x*Hxn dr and (n'|n) = / x*Xn dr. The partial deriva
tive of Eq. (122) with respect to a particular coefficient c* leads to the relation 

aw A A ^ , , , a 
^^k \ n' n I 

( mm \ 

^ ^ c * c „ ( „ ' | H | n ) j . (123) 
9q* 
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If the coefficients are independent, the condition dW/dc^ = 0 can be imposed 
for each value of the index k from 1 to m.* Then, 

m m 

Wj2c„{k\n) = J2cn(k\H\n'j, (124) 
n n 

or, 
m 

J2cn(ilc\H\n\-W{k\n)^=0. (125) 
n 

Equation (125) applies for all values of the index /: = 1, 2 , . . . , m. It is a set 
of m simultaneous, homogeneous, linear equations for the unknown values of 
the coefficients c„. Following Cramer's rule (Section 7.8), a nontrivial solution 
exists only if the determinant of the coefficients vanishes. Thus, the secular 
determinant takes the form 

\lk\H\n\-W{k\n)\ =0. (126) 

In the case in which the functions Xn are orthonormal, {k\n) = 8k,n and 
the variational energies W are just the eigenvalues of the matrix {k\H\n). 
According to the variational theorem, the lowest root of Eq. (124) is the upper 
limit to the true energy of the ground state of the system, ^o-

12.4.4 Linear combinations of atomic orbitals (LCAO) 

It is often convenient to use atomic orbitals as the basis for molecular-orbital 
calculations. Thus, in Eq. (120) the atomic orbitals Xn can serve as the basis, 
and a given molecular system can be described as a linear combination of 
such functions. Clearly, the simplest molecule is diatomic and the appropriate 
molecular orbitals can be formed as linear combinations, v/z. 

0 = CaXa +ChXb. (127) 

where the functions Xa and xt are the atomic orbitals associated with the 
atoms a and Z?, respectively. The coefficients in this linear combination can 
be determined by application of the variational principle, as illustrated in 
the following derivation. This method, which is of general application to 
polyatomic molecules, is referred to in the scientific literature as the method 
LCAO. 

*Note that the equivalent condition d W/dck = 0 yields a set of equations which is simply the 
complex conjugate of Eq. (122). 
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A given application of the LCAO method is characterized by a set of inte
grals. For a diatomic molecule they are 

(128) 

(129) 

(130) 

and 
(131) 

Haa = I^Xa 

Hbb = ixb 

Hah = iXa 

S 

H 

H 

H 

^ 

Xaj, 

Xbj. 

Xbj = [xb 

iXalXb)' 

H Kaj 

The last is known as the overlap integral, as it is determined by the volume 
common to the atomic orbitals a and fe at a given intemuclear distance. In 
general, 5 < 1, an integral that is often set equal to zero in approximate 
calculations. 

The use of a linear variation function was summarized in the previous 
section. For the example of a diatomic molecule the set of simultaneous 
equations [Eq. (125)] becomes 

CaiHaa " W) + C,(//,, - SW) = 0 (132) 

and 
CaiHab - SW) + Cb(Hbb -W)=0. (133) 

The expansion of the corresponding secular determinant leads to the relation 

(Haa - W){Hbb -W)- (Hab - SWf = 0, (134) 

which is quadratic in 1^. To evaluate the coefficients Q and Cb the two values 
of W are substituted successively in either Eq. (132) or Eq. (133), as described 
in the classical example of Section 7.11. However, as these equations are 
homogeneous, only the ratio of the coefficients can be determined. The supple
mentary condition necessary to resolve this ratio is provided by normalization 
of the functions 0. The atomic orbitals are assumed to be normalized, or can 
be made so. Thus, normalization of the molecular orbital in this case can be 
expressed by 

{(P\(t>) = cl-\-cl + 2caCf,S=L (135) 

This example of the LCAO method, as applied to diatomic molecules, is 
perfectly general. However, it is simpler for homonuclear diatomics, for which 
Haa = Hbb' Then, Eq. (134) becomes 

(Haa - Wf - (Hab " SWf = 0, (136) 
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whose roots are 

\±s 
Thus, two values can be evaluated, W^ and VK_, according to the signs in 
Eq. (137). If the appropriate integrals are known, these quantities can be calcu
lated for a given interatomic distance in the diatomic molecule. As indicated 
above the successive substitution of the two values W^ and W- yields 

CaTct = 0. (138) 

With the application of the normalization condition given by Eq. (135), the 
coefficients in Eq. (138) are found as 

Ca=Ch= , (139) 

V2(l + ^) 

and 
Q = -c/ , = - _ , (140) 

V2(l - S) 
respectively, depending on whether the upper or lower sign is employed in 
the preceding equations. The variational wavefunctions are then of the form 

and 

with the corresponding energies given by Eq. (137). 
The simplest diatomic species is the molecular ion H j . Its electronic kinetic 

energy is given by a single term, as that of the protons can be neglected (see 
Section 12.1). The interaction of the electron with each proton is expressed 
by Coulomb's law, as is the proton-proton repulsion. With the use of the 
resulting Hamiltonian the integrals defined by Eqs. (128)-(130) can be evalu
ated exactly, with the functions Xa and Xh the Is orbitals of atomic hydrogen 
(see Section 6.6). The resulting energies calculated with the use of Eq. (137) 
are represented in Fig. 3, as it is the lowest energy level of H J that is of 
interest. Clearly, the curve of W+ exhibits a minimum and, if the corresponding 
state 0+ is "occupied" by the electron, a stable species can exist. This orbital 
is then referred to as a bonding orbital. On the other hand the curve of W_ v̂ ". 
intemuclear distance has no minimum, so its occupation by the electron cannot 
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Fig. 3 Variational energy of Hj as a function of intemuclear distance. 

cr„ \s a*\s 

Fig. 4 The wavefunctions 0+(crgl5) and 0_(cr*l5) for Hj. Note that the wavefunc-
tion 0_ has opposite signs on either side of the dotted line. 

result in bonding of the two protons. Thus, the orbital 0_ is an antibonding 
orbital and, if occupied by the electron, the ion is in a so-called excited state. 

It should be noted (Fig. 4) that if the bonding orbital, designated Og Is, 
is occupied, the probability of finding the electron in the region between the 
nuclei is relatively important. On the other hand, for the antibonding orbital 
( a * \s) there is a nodal plane that passes through the center of symmetry of the 
ion. It is perpendicular to the intemuclear axis. Thus, it can be concluded that 
it is the electronic probability density that is responsible for bonding. Although 
this conclusion is correct and can be generalized, the wavefunctions obtained 
by the LCAO method are usually far from the true functions. Furthermore, 
although the lower energy level as calculated by the method is an upper limit 
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to the true energy of the ground state, the variation theorem in its simplest 
form says nothing about the value of the upper energy level. 

The Hmitation of the above analysis to the case of homonuclear diatomic 
molecules was made by imposing the relation Haa = tibb^ as in this case the 
two nuclei are identical. More generally, Haa # fibb^ and for heteronuclear 
diatomic molecules Eq. (134) cannot be simphfied (see problem 25). However, 
the polarity of the bond can be estimated in this case. The reader is referred 
to specialized texts on molecular orbital theory for a development of this 
application. 

12.4.5 The Hiickel approximation* 

One of the most popular of the semi-empirical LCAO methods is that of 
Hiickel. It is applicable to planar molecules which have :7r-electron systems. 
The "delocalization" of these systems, as treated by this method, has particular 
chemical significance. The traditional application is to the benzene molecule. 
Historically, different "structures" of this molecule were suggested by Kekule^ 
and by Dewar* that are described in virtually all textbooks of organic chem
istry. These structures represented the first efforts to represent the delocaliza-
tion of the n orbitals in such systems. In the present context the delocalization 
can be better specified with the use of the method of Hiickel. 

Consider first the ethylene molecule. Its geometrical structure is shown in 
Fig. 5. The s, py and p^ atomic orbitals of the carbon atoms are assumed to 
be hybridized. This sp^ hybridization implies H-C-H bond angles of 120°, 
approximately in agreement with experimental results. The remaining two px 
orbitals are thus available to contribute to a :7r-electron system in the molecule. 
Here again, the two linear combinations of atomic orbitals yield bonding and 

c 
/ \ 

H H 

Fig. 5 The ethylene molecule showing only the single {a) bonds. 

*Erich Huckel, German chemist (1896-1980). 

^August Kekule von Stradonitz, German chemist (1829-1896). 

*Sir James Dewar, British chemist and physicist (1842-1923). 
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antibonding possibilities. The LCAO method presented in the previous section 
can be employed to obtain a semiquantitative description of the electronic 
structure. 

For a homonuclear diatomic system in the Huckel approximation the inte
grals given by Eqs. (128)-(131) take the simple forms Haa = îb^ = Qf, Hab = 
Hba = fi and S = 0. The atomic orbitals involved, Xa and Xb^ are of course 
the px orbitals of carbon atoms a and b, respectively. The resulting secular 
determinant is then simply 

which can be written as 

a — W P 
P a-W 

X 1 

1 X 
= 0, 

= 0, (143) 

(144) 

with X = (a — W)/p. As the roots of Eq. (144) are x = ± 1 , the energy levels 
are determined by W = ±{a — P), as shown in Fig. 6. The corresponding 
approximate molecular orbitals are also indicated, with the normalizing factor 
I/V2. The coefficients were evaluated as illustrated in the previous section 
[Eqs. (139) and (140)]. Here again, the occupied lower level will result in 
an increased electronic density in the region between the nuclei, although the 
upper level, if occupied, will not. 

As the ethylene molecule contains a total of 16 electrons, there are but two 
that are available to occupy the n system. Two pairs of electrons are assumed 
to fill the two Is atomic orbitals of the carbon atoms. Five pairs of electrons 
contribute to the a orbitals that represent single bonds in Fig. 5. Thus, the two 

w 

c^-H 

a + p-

^t 

n 
^iXa-Xb) 

IJ iXa'^Xb) 

Fig. 6 The n energy levels of ethylene. The asterisk identifies the antibonding orbital, 
while the two arrows represent the two electrons with antiparallel spins corresponding 
to the configuration of the ground state (see text). 
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remaining can occupy the molecular orbitals established by the LCAO method, 
as outlined above. For the ground state of the molecule these two electrons, 
with antiparallel spins following the Pauli principle, occupy the lower energy 
level, as shown in Fig. 6. Excited states can be described by promoting one 
or both electrons to the higher energy level. 

The ethylene molecule in its equilibrium configuration is of symmetry 02h-
Its symmetry can then be used to simplify the development of the appro
priate molecular orbitals. Thus, the characters of the reducible representation 
of the 71 orbitals can be determined, as given in Table 1. With the application 
of the magic formula (see Section 8.9) it is easy to establish the reduction 
of the representation for the two n orbitals, namely, Tj^ = B2g ® BBU- The 
appropriate linear combination of atomic orbitals can then be found with the 
use of the projection operator technique. However, as only two n orbitals are 
involved, it is sufficient to consider a subgroup of 6:̂ 2h that is of order two 
and that includes an operation that exchanges the labels (a,b) on the atomic 
orbitals. The group J\ = 6i is appropriate, as it preserves the g-u property 
of the molecular orbitals. The characters for this group, as given in Appendix 
VIII, are in this case just the coefficients of the atomic wavefunctions, Xa 
and Xb' The notation for the irreducible representations shown in Fig. 6 is 
identified in Table 2. 

In conjugated systems the n orbitals become delocalized. The classical 
example is the butadiene molecule, that is usually described by the formula 
CH2 = CH-CH = CH2. This representation of the molecule does not take into 
consideration the delocalization of the TT-electron system formed by the four 

Table 1 

02h E 

Xn 2 

Symmetry operations of the group 02h and the characters of T,c. 

C2(z) Ciiy) C2{x) i a(xy) a(xz) o(yz) 

- 2 0 0 0 0 2 - 2 

Table 2 The character 
table for the group 
J\ = 6", and the 
characters of T^. 

J\ ^ 0\ 

Ag ^ nl 
A u = TTu 

lUn 

E 

1 
1 

2 

i 

1 
- 1 

0 
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available p orbitals of the carbon atoms. To treat this problem with the use 
of the method of Hlickel, it is sufficient to write the secular determinant as a 
function of the integrals a and ̂  and to introduce the approximations indicated 
above. In addition to the often poor approximation 5 = 0, it is customary to 
assume that there is no interaction between nonadjacent atomic orbitals. Thus, 
the integrals of the type Hat are set equal to zero if the atoms a and b are not 
adjacent. The butadiene molecule provides a good example of this method. 

Butadiene exists in two equilibrium structural isomers. They are represented 
in Fig. 7. However, with the usual Huckel approximation these two structures 
cannot be distinguished, as interactions between nonadjacent atoms have been 
neglected. Thus for either isomer, or even a hypothetical structure in which 
the carbon skeleton is linear, the secular determinant is the same, namely. 

X 1 0 0 
1 jc 1 0 
0 1 jc 1 
0 0 1 JC 

= 0 , (145) 

where x = (a — W)/^, as before. The roots of this equation can be found by 
direct expansion of the determinant (see problem 26). However, the application 
of group theory allows the determinant to be factored, a technique that is often 
useful in more complicated problems. 

Consider the trans isomer of butadiene. Both the symmetry operations that 
define the group (j2h and the characters of the representation YTJ^ are given 
in Table 3. The reduction of this representation leads to Tj^ = 2Bg 0 2Au. 
Thus, two hnear combinations of the atomic orbitals can be constructed of 
synmietry Bg and two others of symmetry Au. Their use will factor the secular 
determinant into two 2 x 2 blocks, as described in the following paragraph. 

As indicated above, the conventional structure of trans butadiene does 
not include the delocalization of the TT-electron system. This effect can be 
analyzed, at least approximately, by application of the Huckel method. As 
in the example of ethylene, each carbon atom has an available p orbital-the 

\ 
Ci 

/ 

/ 

- \ / 
C3 C4 

/ \ 

\ 
c, 
/ 

/ 
— C2 

C3 

/ 
- C 4 

\ 
(a) (b) 

Fig. 7 The equilibrium structures of butadiene: trans (a) and cis (b). Only the a 
bonds are shown. 
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Table 3 The symmetry operations 
of the group 6̂2h and the characters 

ofr,. 

6^2h E C2 i ^h 

Xn - 4 

p2 orbitals in this case. With the use of the projection operator, the linear 
combinations of the four atomic orbitals can be constructed, viz. 

B. 
^ (Xi - XA) 

and 

•y|(X2-X3) 

;^(Xi+X4) 

[:^(X2 + X3) 

(146) 

(147) 

where the atomic numbering is as shown in Fig. 7. The two diagonal blocks 
of the factored secular determinant are then of the form 

B g • 
X 1 

1 x - \ 

and 

K-
1 

x + \ 

= 0 

= 0. 

(148) 

(149) 

The roots of Eqs. (148) and (149) are given by jc = (1 ± \/5)/2 and x = 
(—1 di V5)/2, respectively.* The results of the above analysis are summarized 
in Fig. 8. 

The benzene molecule in its equilibrium configuration is planar. Its symmetry 
is described by the point group 0eh as shown in Fig. 8-1(c). The delocalized 
7T system is represented there by dotted lines. The six p^ orbitals contribute to 
the TV system, as simply described by the Hiickel approximation. The reduc
tion Tjj^ = B2g 0 Eig 0 A2u 0 E2u can be found as in the previous examples. 
However, to construct the appropriate linear combinations of the n orbitals, it is 
sufficient to choose a subgroup of 0eh whose symmetry operations permute all 

*The quantity (1 + V5)/2 = 1.62 is known as the golden ratio. It appears often in works 
of art, as for example to determine the approximate ratio of the height to width of a classic 
painting - and this page. 
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w, 

a- 1.618 ^ -

a -0 .618)8 -

a + 0.618 )S-

a + 1.618)6-

k 

l i 
XL. 

B„ 0.372(x,-X4)-0.602(x2-X3) 

A, 0.602(x, + X4)-0.372(x2 + X3) 

B^ 0.602(x,-X4) + 0.372(x2-X3) 

A^ 0.372(x, + X4) + 0-602(x2+X3) 

Fig. 8 The energy levels and wavefunctions for the jr-orbitals of trans butadiene. 
The arrows define the electron configuration of the ground state. 

six of the p2 atomic orbitals. For example, the choice of the group 6̂ 6 leads to the 
equivalent reduction Tj^ = A 0 B 0 E i 0E2 . The character table for this group 
(see Appendix VII) contains complex elements of the type s = exp(27ti/6). 
The application of the projection operator will then yield linear combinations 
such as 

Xl + £X2 - £*X3 - X4 - £X5 + ^*X6 * 

Xl + ^*X2 - ^X3 - X4 - £*X5 + £X6 
(150) 

As £ H- f* = 1 in this case, the equivalent linear combinations that involve 
only real coefficients can be found by adding and subtracting the two functions 
given in Eq. (150). For the n system of benzene the normalized linear combi
nations of P2 can then be determined, as given in Fig. 9. It is easily verified 
that these linear combinations are orthonormal. Furthermore, they result in the 
desired factoring of the secular determinant. The construction of the energy 
level diagram is then relatively straightforward (problem 29). 

The use of group theory to factor the secular determinant is of increasing 
importance as the molecule becomes larger, providing of course that it main
tains a relatively high synmietry. With the use of available computer programs 
the advantages of this approach may seem to be of less interest. However, 
it should be understood that symmetry arguments lead to visualization of 
the molecular orbitals, as now represented by a number of programs. Their 
comprehension requires the basic understanding of the elements of group 
theory, as outlined above. 

As a final exercise for the reader, consider the naphthalene molecule (sym
metry &2h)^ as shown in Fig. 10. Application of the Hiickel method leads to 
a lOx 10 secular determinant (see problem 30). However, with the application 
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W 

ct-2^-\ 

a- H 

a +1^-

V6 {X\- X2 + XT.- XA+ X5- Xe) 

- L {2x\- Xi- XI, + '^XA- X5- Xe) 

\ iXi-X3 +X5-Xd 

M M 
M., 

i(X2 + X3-X5-X6) 

V6 •(X1 + X2 + X3+X4+X5 + X6) 

Fig. 9 The energy levels and the LCAO orbitals for the :7r-electron system of benzene. 
The electron configuration as represented by the arrows is that of the ground state of 
the molecule. 

C7 

\ . 

Fig. 10 The naphthalene molecule. Only the a bonds are represented. 

of the method outlined above the reduced representation takes the form Y^^ = 
2Big 0 3B2g 0 2Au 0 3B3u. The appropriate linear combination of p^ orbitals 
can be constructed directly with the use of the projection operator. 

PROBLEMS 

1. Verify Eq. (10). 

2. Develop the series of relations given by Eqs. (18)-(...). 
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3. Derive Eq. (26). 

4. Derive Eq. (30). 

5. Derive Eq. (35). 

6. Make the indicated substitutions to obtain Eq. (44). 

7. Verify Eq. (47). 

8. Derive Eq. (48). 

9. Derive the secular equations, Eq. (58). 

10. Verify Eq. (62). 

11. Verify Eq. (69). 

12. Carry out the separation of variables to obtain Eq. (72). 

13. Derive Eq. (76). 

14. Make the indicated substitution to obtain Eq. (85). 

15. Derive Eqs. (86) and (87). 

16. Integrate Eq. (87) as indicated. 

17. Derive the relation between the Einstein coefficients [Eq. (94)]. 

18. Evaluate the transition moments in Eq. (99) for u' = u ± 1. 

Ans. See Appendix IX. 

19. Verify the selection rules for the hydrogen atom as given in the last paragraph 
of Section 12.3.3. 

20. Prove the variation theorem [Eq. (111)]. 

21. Calculate the normaHzation factor in Eqs. (113) and (118). 

22. Verify Eq. (115). 

23. Verify Eq. (119). 

24. Derive the secular determinant [Eq. (126)]. 

25. Show that the variational energies of a homonuclear diatomic molecule are given 
in the LCAO approximation by Eq. (137) and that the corresponding wavefunc-
tions are as indicated in Eqs. (141) and (142). 
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26. Find the roots of Eq. (145) by direct expansion of the determinant and compare 
them with the results given below, Eq. (149). 

27. Show that r;^ = 2Bg 0 2Au for the TT-electron system in trans butadiene. 

28. Verify Eqs. (146) and (147). 

29. Apply the projection-operator method to obtain the molecular orbital expression 
shown in Fig. 9 and verify the energies. 

30. Set up the secular determinant for the TT-system of naphthalene and factor it as 
explained in the last paragraph of this chapter. 


