
13 Numerical Analysis 

13.1 ERRORS 

All measurements are subject to errors. It is therefore essential in any scientific 
endeavor to analyze the results of experiments and to estimate the reliability 
of the data obtained. In general, experimental errors can be classified as 

(i) systematic, 
(ii) personal, and 

(iii) random. 

Systematic errors can arise in measurements made with a given scientific 
instrument. Often the acquired data do not represent directly the quantity of 
interest. Furthermore, the instrument used may not be correctly calibrated. 
These, and other sources of error that are inherent in an experiment, give rise 
to systematic errors. With care on the part of the experimentalist they can 
often be detected and, one hopes, corrected. 

Personal errors sometimes occur due to inattention, or even prejudice, on 
the part of an observer. Sometimes an experimentalist would very much like 
to obtain data that agree with his hypothesis. His reaction - that is, to cheat 
slightly - may be entirely subjective. Furthermore, he may quite unconsciously 
make mistakes, either in his observation or in the subsequent presentation of 
his results. A well known example of the latter type of error was in an early 
report of the concentration of iron in spinach. According to that communica­
tion, spinach was found to be an incredibly rich source of iron. This result 
was propagated in the literature - including the image created by Popeye to 
encourage the young to eat more spinach. It was not a bad idea, of course, 
but a decimal-point error in the early experimental results was responsible for 
the exaggeration of the iron content of spinach. 

If systematic errors can be traced, and perhaps eliminated, and personal 
errors can be minimized, the remaining random errors can be analyzed by 
statistical methods. This procedure will be summarized in the following 
sections. 
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13.1.1 The Gaussian distribution 

Consider the probability 

W{x) = p^^"-^C(n,X) = y ,̂ • , (1) 
(n — x)\x\ 

as given by Eq. (10-14) for the Bernoulli trials. Out of/t trials, p is the number 
of successes and q the number of failures. When n is large, Eq. (1) can be 
approximated by a Gaussian distribution. This result is obtained by taking the 
logarithm and substituting Stiding's approximate expression [Eq. (10-21)] for 
each factorial. Then, 

In W{x) =xln — -^(n-x)ln - ^ ^ -\-Un . (2) 
X n — X 27tx(n — x) 

The logarithms in the first two terms in Eq. (2) can be developed in a power 
series, as shown in Section 2.9, e.g. 

In — = —In 
(l j _ ^-^P\ ^ _ Ix -np _ ^ /x-npV _^ 
\ np ) \ np ^ \ n p ) 

(3) 

and similarly for the logarithm of nq/{n — x). Then, as /? -h ^ = 1, 

W{X) ^ ^ ^-{x-np)'/2npq ^4^ 
^Jlnnpq 

if only the first term in each series is retained (problem 2). 
The function W{x) is that of Gauss, which was discussed in Section 3.4.5. 

It is presented in Fig. 3-4, although the normalization condition is in this 
case somewhat different. As W{x) dx represents a probability, its integration 
over all of the sample space must yield the certainty. The function is thus 
normalized in the sense that 

W{x)dx = 1. (5) 

The approximations introduced above are quite satisfactory close to the origin, 
although they become questionable further away. However, it is just in the 
latter regions that the exponential becomes weak. Thus, for most practical 
purposes Eq. (4) is a good approximation to the probability distribution, as 
the number of samples becomes large. 

It is customary to define the dispersion of the distribution by 

a^ = npq. (6) 
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The quantity a is known as the standard deviation. Furthermore, the mean 
value of the random variable x is given by np = x. Then, Eq. (4) becomes 

W(x) ^ _ J ^ ^ - U - ^ ) V 2 a \ (7) 
V27ra 

The result obtained here has particular significance in the analysis of random 
errors of measurement. The substitution t =: (x — x)/a in Eq. (7) leads to the 
expression 

fP(t) ^ -^e-^'^\ (8) 
^/2na 

which is Gauss's error function. From Eq. (7) it can be concluded that the 
probabiHty that a given measurement yields a value of x in the interval ±x is 
given by 

W{x) ^ -i= / e-'''^ dt = - ^ f e-y^ dy, (9) 
iln J-x V^ J-x 

which can be written as 

erfix) = ^ f \-y'dy. (10) 

The integral in Eq. (10) is the usual definition of the error function. A closely 
related function is the complementary error function 

2 Z*̂  2 
erfcix) = 1 - erf(x) = -= e'^ dy. (11) 

The error function cannot be evaluated analytically, although it is readily 
available in the form of tables and evaluated in many computer programs. 

13.1.2 The Poisson distribution* 

In the previous section it was assumed that quantities of the order of l/np and 
l/npq were negligible. In that case the mean value of np is a large number. 
However, in many appUcations the quantity p is small and the product np 
remains finite. In this case the distribution is spread out, although the mean 
value remains small. The resulting distribution is no longer symmetrical. This 
behavior is illustrated in Fig. 1. 

*Simeon Denis Poisson, French mathematician (1781-1840). 
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Fig. 1 The Poisson distribution [Eq. (13)] with p = \. 

Return now to the binomial distribution [Eq. (1)] and let n approach injfinity. 
The result is then 

ff^nix) = 
[1 - (np/nWinpY 1[1 - (l/n)]... [1 - (x - l)/n] 

XI 

thus. 

/̂/7(jc) = Urn Wn{x) = 

[1 - (np/n)V 

(npYe-'^P 

xl 

(12) 

(13) 

Note that because the product np remains finite, the second factor in Eq. (12) 
approaches unity in the limit. Similarly, from the definition of the exponential 
(Section 1.4), //m„_^oo[l - inp/n)Y = e~^P, Equation (13) is an expression 
of the Poisson distribution. 

The Poisson distribution is usually applied in the case of small values of 
np. For large values it is well approximated by the normal, or Gaussian, 
distribution. For a given value of p the distribution becomes more nearly 
symmetric with increasing values of n. It becomes wider and approaches a 
Gaussian form, as shown in Fig. 1. This distribution, and others, are often 
approximated by the normal (Gaussian) distribution in the region near the 
maximum. Although there are many applications of the Poisson distribution, 
the best known is in the area of atomic physics. The result of counting parti­
cles emitted by a radioactive substance is usually described by the Poisson 
distribution. 

13.2 THE METHOD OF LEAST SQUARES 

The normal distribution, as expressed by Eq. (7), can be employed in the 
analysis of random errors. If the error in a given measurement / is represented 
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by Xi, the probability that it Hes between jc/ and x, + cLc/ can be written as 

Pi = -^e-'f^""' dxi . (14) 

Hence, for n independent measurements the combined probability is given by 

djci djC2 .. .dxn . (15) ^-h^^=[^J^^p[-(y<^')pf 
For a given value of a the probability is maximum when the sum in the expo­
nent is minimum. Thus, the minimization of Yll=\ ^f becomes the criterion for 
the most probable value obtainable from n equally reliable measurements. This 
result is the basis for the various curve-fitting procedures that are commonly 
used in the analysis of experimental data. 

It is very often of interest to fit a set of data points to a straight line. While it 
is possible to draw a line on a graph by eye, it is clearly preferable to have an 
objective method to establish the line with respect to the experimental points. 
Suppose that the straight line is specified by 

Yi =mxi-hb, (16) 

where m is its slope and b its intercept on the ordinate axis. The deviation of 
each point from the fine is equal to yi — Yi = Si. The sum of squares, which 
is then given by 

n n 

i=\ i=\ 

is the quantity to be minimized with respect to the two parameters m and b. 
Thus, 

^ = -2T{yi-mxi-b) = 0 (18) 
ob ^ 

i=\ 

and 
dS " 
— = - 2 T(yi - mxi - b)xi = 0. (19) 
dm ^ 

The resulting expressions for the two parameters can be expressed as a function 
of the averages x = l/n Yll=\ -̂ M y = 1/" Jll=\ yt^^^ = 1/^ Yll=\ ^f ^^^ 
Jy = l/n Yll=\ ^iyi i^ the form 

m = — — = - (20) 
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and 
b^y mx. (21) 

Thus, the straight Hne corresponding to the best fit is established without 
ambiguity. 

Many computer programs exist to achieve the linear, least-squares fitting 
(linear regression) to a given set of data. It is, however, worthwhile to apply 
the method to a simple problem in order to understand the basis. The data 
presented in Fig. 1-1 represent the weight of Miss X as a function of the 
date. While there is no reason to suppose that there is a linear relationship 
implied, the straight line provides her with an indication of her rate of weight 
loss, namely, the slope of the fine. The least-squares fit to the data yields the 
relation Y — —0.12x + 69.6, as shown in the figure. 

13.3 POLYNOMIAL INTERPOLATION AND SMOOTHING 

Consider the simplest method of interpolating between two successive data 
points. It is linear, midpoint interpolation. This procedure is illustrated in 
Fig. 2. The ordinate value of the interpolated point is given by 

^ = ^y-XIl + 2>^+l/2' (22) 

the average of the values at the two points. The slope of the line segment 
connecting the two points is easily found as 

dy 
(23) 

where the interval Ax has been taken equal to one. The coefficients appearing 
in Eqs. (22) and (23), when arranged in matrix form yield 

A = 
1 1' 
2 2 

-1 1 

(24) 

y-m 

•< ^x • 

V+l/2 

Fig. 2 Linear, midpoint interpolation. 
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(a) 
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o o 

o o 

(b) 

o o 

(c) 

(d) 

Fig. 3 Convolution with a four-point polynomial spline. 

a matrix that will be defined in the following general development of the 
interpolation method. 

A very simple example of interpolation was provided above with the use 
of a linear function. However, interpolation involving polynomials of higher 
degree, with more points on either side of the interpolated one is relatively 
compHcated. In effect, the matrix A is then not easily found by inspection. 

In the precomputer era a series of experimental points on a graph such 
as shown in Fig. 3a, was "fitted" with a spline - a sort of flexible ruler that 
could be adjusted to fit approximately a certain limited number of points. This 
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procedure is illustrated in Fig. 3b-d. The spline forms a smooth curve which 
can be used by the draftsman to interpolate between successive data points. 
Furthermore, if there is a certain amount of scatter in the data, a smoothing 
operation can be carried out, albeit with certain artistic licence. 

In computer programs that are now devoted to these problems the inter­
polation and smoothing of data are special cases of convolution of the data 
with a set of numerical coefficients, represented for the present by the vector 
Ai(x — Xi). These coefficients can be determined in advance and placed in 
memory to be used as needed. If the data points are entered as a vector j(x/), 
the convolution can be written in the form 

Y(x) = ^Ai(x -Xi) -yixi). (25) 

This expression is the discrete form of the convolution integral defined in 
Eq. (11-13). 

In practice the experimental values y(xi) are usually measured at equally 
spaced abscissa values and the convolution is applied in succession to limited 
portions of the experimental data. In principle the equal spacing of data points 
along the x axis is not necessary, although it is essential in most numerical 
applications. It is useful to define the difference y — Y = e, the vector of 
"errors" at each point. The chosen function Y(x) will be assumed here to be a 
polynomial of degree k — I, although it can be a more general function. Then, 
if # is a vector composed of the k coefficients in the polynomial 

Y{x) = xe, (26) 

where Z is a 2m x /: matrix (with 2m > k) whose elements are powers of x. 
Specifically this matrix is of the general form 

/ ( -m + )̂« {-m + \y 

{-m + i)^ 

X = 

{-m + \f-^\ 

\ {m- \f (m 2^ (m 

(27) 

i ) * - ' / 

Then 
= y-xe (28) 
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and it is the quantity S = ee that is minimized in the application of the least-
squares criterion used in the previous section. Thus, 

ds 
3^ 

= 0, j = l,2,...,k (29) 

which leads to the matrix relation 

2X(y -X$) = (i. 

Its solution for 0 is in the form (problem 8). 

0 = iXX)-^Xy ^Ay 

(30) 

(31) 

and thus the matrix A [see Eq. (25)] can be constructed from the matrix X. It 
should be noted that the derivatives of order n can also be evaluated, as 

(32) 

The first row of the matrix A consists of the coefficients for the interpolation of 
the values of j , , while subsequent rows provide the values of the corresponding 
derivative coefficients. 

The application of the general method can be illustrated by the example 
shown in Fig. 3. The series of data points is fitted by a polynomial of second 
degree. Two points will be employed on either side of the point to be inter­
polated. Thus, m = 2 and the matrix X is of the form 

/ ( - •i)« (-1)' (-

4)"̂  (- 4)' 
•l)'\ 

H)' 
(+i)' ( + 2 ) v^2^ ^ ' 2 i+^f 1)0 

2' 

\i+lf (+|)' (+f)V 

/ I 

1 

3 
2 
i 
2 

1 

4 

4 
1 ^ 2 

(33) 

and 

A = (xxy^x = 
16 

3_ 
10 

4 

_9_ 
16 
± 
10 

"4 

_9_ 
16 
± 
10 

"4 

~T6 

To 

4 , 

(34) 

(problem 9). 
The coefficients appearing in the first row of the matrix A provide the 

weight attributed to each of the four data points that determine the interpolated 
point indicated by the arrow in Fig. 3b. The elements in the second and third 
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rows are similarly employed if there is an interest in calculating the first and 
second derivatives, respectively. The determination of the interpolated points 
at / + 1 and / + 2 is carried out in the same way, as indicated in Figs. 3c and 
3d. This procedure is continued to complete the convolution represented by 
Eq. (25). The matrices A that have been calculated for polynomials of various 
degrees and number of points, have been published and are available in certain 
computer programs. 

The interpolation method outlined above can be applied as well to the 
"smoothing" of experimental data. In this case a given experimental point 
is replaced by a point whose position is calculated from the values of m 
points on each side. The matrix X then contains an odd number of columns, 
namely 2m + 1. The matrices A have also been tabulated for this application. 
This smoothing method has been used for a number of years by molecular 
spectroscopists, who generally refer to it as the method of Savitzky and Golay.* 

13.4 THE FOURIER TRANSFORM 

13.4.1 The discrete Fourier transform (DFT) 

The Fourier transform was defined by Eq. (11-2) as 

fix)e^''"'''dx. (35) 
-OO 

As experimental data represented by f(x) are usually symmetrical (even), or 
can be made so, it is the cosine transform that is appropriate, viz. 

-i F{k)= j f (x) cos (271 kx)dx. (36) 
J —OO 

In spectroscopy, for example, the Fourier transform of an interferogram, /(x) 
is sampled at regular intervals, Ax. Equation (36) is then replaced by the 
summation 

m=M/2-\ 

F(k) = Ax Y^ f{mAx) cos (Inkm Ax), (37) 
m=-M/2 

where M is the number of points sampled. As f(x) has been assumed to be 
an even function, Eq. (37) can be written as 

*George Boris Savitzky, American physical chemist (1925-); Marcel J. E. Golay, Swiss-
American physicist (1902-). 
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F(k) = Ax 
m=M/2-\ 

^(0) + ^ firnAx) cos{2nkmAx) 
m=\ 

+ f[iM/2)Ax]cos[27Tk(M/2)Ax] (38) 

if an even number of points has been chosen. The total number of terms to 
be evaluated is then reduced from M to (M/2) + 1. 

The computer evaluates the cosine functions appearing in Eq. (38) from their 
series expansions, as given by Eq. (1-34). As M is usually a large number, 
the time required for the evaluation of the sum can be considerable. However, 
the arguments of the cosines are simply related because the data points are 
separated by the constant interval Ax. Given the relation 

cos a-\-cos p = 2 cos [^(a + fi)] cos [^(a - fi)], (39) 

(problem 10), its application to the present problem can be written as 

cos[(n + l)r]] = 2cos nrjcos r] — cos[(n — l)r]] (40) 

where r] = ^(a — fi). This recurrence relation is known as that of Chebyshev. 
If T] = 2nkmAx is the argument of the cosines in the summation [Eq. (38)], 
all of the other cosines can be calculated from this expression. The result is a 
considerable saving in the calculation time. 

Furthermore, as the output of this calculation is normally in the form of 
regularly spaced data points, it can be expressed as 

m=M/2-l 

F{nAk) = Ax ^ fimAx) cos (27T mn Ak Ax). 

In this case the cosines can be arranged in matrix form, viz. 

1 1 1 - A 

(41) 

C = 

/I 1 1 1 
1 cos u COS 2u cos 3M 
1 cos 2M COS 4M COS 6M 

1 cos 3M COS 6M COS 9M 
(42) 

7 
where u = 27T AkAx. If there are the same number of points in jc-space as in 
^-space, as is usually the case, the matrix C is square and symmetrical with 
respect to the principal diagonal. With the aid of the Chebyshev recurrence 
relation the elements of this matrix can be rapidly calculated, once cos u has 
been evaluated. If the ordinate values of f{x) are arranged in the form of a 
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column vector/and those of {Ax)F(k) as a vector F, the discrete Fourier 
transform is then calculated by the simple matrix multiplication, 

F=Cf. (43) 

This numerical method of computing the DFT is sometimes referred to as the 
slow Fourier transform - by comparison with the fast Fourier transform (FFT) 
described in the following section. 

13.4.2 The fast Fourier transform (FFT) 

The fast Fourier transform can be carried out by rearranging the various terms 
in the summations involved in the discrete Fourier transform. It is, in effect, 
a special book-keeping scheme that results in a very important simplification 
of the numerical evaluation of a Fourier transform. It was introduced into the 
scientific community in the mid-sixties and has resulted in what is probably 
one of the few significant advances in numerical methods of analysis since 
the invention of the digital computer. 

The basic argument in the FFT algorithm is determined by the initial require­
ment that 

k^^^ = ^Ak=-^, (44) 
2 ZAJC 

where M is the number of measured points. Thus, the point-by-point accumu­
lation of data in k space is made symmetrically with respect to the maximum 
at kfnax' Equation (44) corresponds to A/:AJC = M~^. Furthermore, the matrix 
C is always taken to be square, viz. N — M and of rank 2^, where i is an 
integer. Under these conditions the cosines appearing in the matrix C will all 
be of the form cos{2nmn/M). Here, the (independent) indices n and m have 
been chosen to run from zero to M — 1. In this case the general expression 
for the discrete Fourier transform [Eq. (41)] can be written as 

f(m)cosl-^\. (45) 

Furthermore, the choice of the cosine transform implies that f(m) is symmet­
rical about its maximum value; thus, f(m — M) = f(m). 

With the arguments of the preceding paragraph in mind it becomes possible 
to construct the functions F{n) in k space. This procedure is best explained 
with the aid of an example. Consider the simple case in which M = 8 = 2^. 
With Ax = ^, Eq. (45) yields the expressions 

^(0) = \{f(0) + / (4) + / (2) + / (6) + / ( I ) + / (5) + / (3) + /(7)} 

= ^{/(O) + / (4) + 2/(2) + 2/(1) + 2/(3)}, (46) 
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F( l ) = i{/(0) - / (4 ) + 0/(2) + 0/(6) 

+ [ / ( l ) - / ( 5 ) - / ( 3 ) + / (7 ) ]co5f} 

= 5{/(0) - / (4) + 2 [ / ( l ) + -fi5)]cos f } , 

F(2) = i{/(0) + / (4) - / (2) - / (6)) , 

F(3) = i{ / (0) - / (4) - [ /(I) - / (5 ) - / (3 ) + /(7)] C05 f ] 

(47) 

(48) 

(49) 

and 

F(4) = ^ {/(O) + / (4) + / (2) + / (6) - / ( I ) - / (5) - / (3) /(7)} 
(50) 

(problems 11). 
The order in which the functions / (m) are presented in the above rela­

tions is specific. First, note that all of the functions of even values of m are 
specified before those of odd values. Moreover, the order employed here is 
referred to as reverse binary order,* which does not correspond to the order 
that might be intuitively established, namely, m = 0, 1, 2 , . . . , 7. Furthermore, 
each is multiplied by a value of cos{2nnm/S), as M = 8 in this case. Clearly, 
Eqs. (46-50) can be recast in matrix form. However, with the addition of the 
symmetry conditions F(5) = F(3), F(6) = F(2) and F(6) = F( l ) the appro­
priate 8x8 matrix C can be easily constructed. On the other hand, if the inverse 
binary order is also imposed on the elements of the vector F{n), a considerable 
simphfication results. 

Continuing with the eight-point transform, Eq. (43) can be written in 
the form 

/ F ( 0 ) \ 

F(4) 

F{2) 

Fi6) 

F(l) 
F{5) 

F(3) 

\F{7)J 

1 
2 

(I 
1 
1 
1 

1 -
1 -
1 -

V -

1 1 
1 1 
1 - 1 
1 - 1 

1 0 
1 0 
1 0 
1 0 

1 
1 

- 1 
- 1 

0 
0 
0 
0 

1 
- 1 

0 
0 

c 
—c 
—c 

c 

1 
- 1 

0 
0 

—c 
c 
c 

—c 

1 
- 1 

0 
0 

—c 
c 
c 

—c 

\ \ 
- 1 

0 
0 

c 
—c 
—c 

c / 

/ / ( 0 ) \ 
/(4) 
/(2) 
/(6) 
/ ( I ) 
/(5) 
/(3) 

V/(7)/ 
(51) 

*In binary algebra [Boolean, after George Boole, British mathematician (1815-1864)] the 
indices 0 , 1 , 2 , . . . , 7 are represented by 000, 001, 010, Oil, 100, 101, 110, and 111, respec­
tively. The reversal of these binary numbers yields the values of m in the order indicated in 
Eqs. (46)-(50). 
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(problem 12). Note that the matrix C is now symmetric with respect to the 
principal diagonal. Furthermore, there is symmetry with respect to the parity 
of both m and n. In the 4x4 block that corresponds to both m and n even 
the columns occur in identical pairs, while in the block with both m and n 
odd the result is analogous, although the signs are reversed. It is apparent 
that only four matrix elements need be evaluated, viz. c = cos (IT/4), plus the 
trivial ones cosO = 1, cos n/2 = 0 and cos n = —1. The matrix C given in 
Eq. (51) should be compared with that obtained by application of Eq. (42). 
Note that the factor ^ is just Ax = l/i. 

It is instructive to consider a specific example of the method outline above. 
The triangle function (l/l) A (x/l) was discussed in Section 11.1.2. It was 
pointed out there that it arises in dispersive spectroscopy as the sht function 
for a monochromator, while in Fourier-transform spectroscopy it is often used 
as an apodizing function.* Its Fourier transform is the function sinc^, as shown 
in Fig. (11-2). The eight points employed to construct the normahzed triangle 
function define the matrix 

0 
1 
4 
1 
4 
3 / = (52) 

W 
where it is essential to preserve the order of the elements as given in Eq. (51). 
Multiplication of the vector/by the matrix C of Eq. (51) yields 

/ 1 \ 
0 
0 
0 

F = 
la + c) 

i ( i -c ) 

(53) 

*An apodizing function is employed to reduce oscillations in an observed spectrum due to 
discontinuities at the ends of an interferogram. 
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Fig. 4 The Fourier transform of the triangle, (l/i) /\(x/i). The points calculated 
with the use of Eq. (53) are indicated by x. 

which is the desired Fourier transform. This result is compared with the func­
tion sinc^ in Fig. 4. Considering the limited number of points employed, this 
agreement is excellent. Clearly, it would be necessary to carry out the trans­
form with a larger number of points to obtain a more convincing description 
of the function sinc'^. 

The symmetry and simplicity of the matrix C (and hence the extreme 
rapidity of the FFT) is determined by the particular order employed in both 
the input vector / and the output F. Thus, both sets of data must be rear­
ranged from what would be normally expected. While this problem represents 
an inconvenience for a programmer, it is carried out automatically in avail­
able programs. Although it would probably go un-noticed by the user, it is 
important for him or her to understand the fundamental algorithm of the FFT, 
which is based on the inverse binary order explained here. 

13.4.3 An application: interpolation and smoothing 

Both interpolation and smoothing of experimental data are of particular 
importance in all branches of spectroscopy. One approach to this problem 
was considered in Section 13.3. However, with the development of the FFT 
another, often more convenient, method has become feasible. The basic 
argument is illustrated in Fig. 5. Given a particular problem whose solution 
may appear to be difficult, it is sometimes possible to resolve it via recourse 
to the Fourier transform. 

Consider the problem of smoothing an experimental curve, such as repre­
sented in Fig. 6a. It might well correspond to a spectrum, as observed in 
absorption, emission or, say, Raman scattering. The noise is, usually at least, 
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PROBLEM 
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Fourier 
transform 

PROBLEM 
in Fouri er space 

Difficult 

Relatively easy 

SOLUTION 

1 
Inverse 
Fourier 

transform 

SOLUTION 
in Fourier space 

Fig. 5 The solution of a problem with the aid of the Fourier transform. 

largely random. As it can be reasonably represented by a normal distribution, 
it would seem appropriate to smooth the observed data by convolution with 
a Gaussian function. This operation is conveniently carried out by first trans­
forming the data into Fourier space, where they can simply be multiplied by 
the appropriate Gaussian, as the latter is of course the Fourier transform of 
the original Gaussian (see Fig. 11-3). The product is subsequently transformed 
back as a smoothed spectrum. An example is shown in Fig. 6. If convoluted 
by a Gaussian of width 5 points, the experimental spectrum of Fig. 6a is 
smoothed as in Fig. 6b. Further smoothing, for example by a Gaussian of 
width 30 points, results in a substantial loss of information. Thus, as in the 
case of polynomial smoothing, this method must be used with discretion. 

The principle presented above can also be applied to interpolate points in 
an experimental profile. If the original function F (a spectrum, for example) is 
transformed with the use of the FFT algorithm, the result is a function of the 
same number of points in Fourier space. It might be, for example, the original 
interferogram/that was used to generate the spectrum. The number of points 
can be augmented by simply adding zeros to the vector / . If the number of 
points is doubled, the result of carrying out the inverse transform is to produce 
the vector F with twice as many points as before. This procedure corresponds 
exactly to midpoint interpolation of the original spectrum by the function sine. 
This result should become evident if it is recalled that the sine function is the 
Fourier transform of the boxcar (Fig. 11-1), whose width has been doubled by 
the operation of "zero filling". Obviously, no new information is obtained by 
this procedure, but the result may be of esthetic value in the presentation of the 
spectrum. This method yields better results than the more usual polynomial 
interpolation method presented in Section 13.3. 
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(a) 

(b) 

(c) 

Fig. 6 Gaussian convolution of an experimental profile: (a) raw spectrum; (b) after 
convolution by a Gaussian of width 5 points; (c) after convolution by a Gaussian of 
30 points. The ordinate scale is arbitrary. 

13.5 NUMERICAL INTEGRATION 

The numerical evaluation of definite integrals can be carried out in several 
ways. However, in all cases it must be assumed that the function, as repre­
sented by a table of numerical values, or perhaps a known function, is well 
behaved. While this criterion is not specific, it suggests that the functions 
having pathological problems, e.g. singularities, discontinuities, . . . , may not 
survive under the treatment in question. 
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a -̂ 1 -̂ 2 -̂ n-l b 

Fig. 7 The trapezoids. 

13.5.1 The trapezoid rule 

Consider a function y{x) as shown in Fig. 7. If the interval of integration, say 
from a to b, is divided in n equal intervals, 

xj^ = a -\- kAx, (54) 

where k = 0, 1,2,... ,n, Ax = (b — a)/n and yk = yixk)- HyM is expanded 
in a Taylor series (Section 2.9), 

y(x) = y(xo) -\-(x - xo)y(xo) + ^(-^ - xofy'(xo) + 

The integral of this expression from JCQ to jci is given by 

/

'̂ r(x —jco)̂  
y(x) dx = ix - xo)y(xo) + y (xo) 

+ 
(x -xpy 

3! 

= Ax3;(xo) 4-

^̂ (̂ 0)1 + 

|y («) ] + 
Ax 

-y"(xo) + 
From Eq. (55) 

(55) 

(56) 

Ax 
y\ = yixi) = yo + Axy'(xo) + -ryy'ixo) H— , 

which when multiplied by Ax /2 and substituted in Eq. (56) yields 

/

•̂ i Ax Ax^ 

y(x)dx = ~[yixo) + y{xi)] - -^/(xo) + •••• 

(57) 

(58) 
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The integral over the entire region can then be written as 

f^ r" Ax 
/ y(x) dx = / y(x) dx ^ —[yo + 2ji + 2^2 

Ja JXQ ^ 

+ --- + 2 > ; , _ I + > ^ J + ^ ( A 7 ' ) , (59) 

where the term (5(AJC ) = —(AJC IYl)\y'(b) — y\d)\ represents the error in 
the simple trapezoid method of numerical integration. 

13.5.2 Simpson's rule* 

In the method presented in the previous section each vertical "slice" was 
defined by two successive points, JCQ, JCi; jci, JC2; etc. If now the successive 
points are selected three-by-three, they can be connected by a parabola. The 
approximate integral over the first two slices can then be written as 

2̂ AJC 

y{x)dx ^ —[y(xo) +4y(xi) + yU2)]. (60) 

The correction to this expression involves multiple derivatives, although the 
basic equation, Eq. (60), does not. The development of this result, as above 
for the trapezoid rule, leads to the relation for the integral over the range a to 
b in the form 

/ 

^ AJC 

y{x) dx ^ —\y{x^) + 4y(xi) + lyix^) + Ay{x^) + • • • 

+ 2};(x,_2) +4>;(x„_i) + y(jc„)]. (61) 

It should be noted that n has been assumed here to be even. Equation (61), 

without the inclusion of the correction term in AJC , is the one usually used 
in the numerical evaluation of integrals. When higher precision is required, 
and a suitable computer is available, the algorithm described in the following 
section can be employed. 

13.5.3 The method of Romberg^ 

The two well-known methods of numerical integration described in the 
previous sections can be generalized. Represent the sum on the right-hand 
side of Eq. (59) as 5o(n). This function converges but very slowly towards 

*Thomas Simpson, English mathematician (1710-1761). 

^Werner Romberg, German mathematician (1909-). 
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the exact value of the integral as « ̂ - oo. However, the following method is 
much more efficient. 

Reconsider Eq. (59) in the form 

So(n) = / fix) doc + C(AJC ) + (9{^x ), (62) 
Ja 

where C is a constant. If the number of intervals n is now doubled, this 
expression becomes 

So{2n) = / fix) dx + \CiAx ) + C9iAx ). (63) 
Ja 

By eliminating the constant C between Eqs. (62) and (63) the relation 

/ 

\ 4Soi2n)-Soin)^^.--4^ 
fix) dx = + (9iAx ) 

= Sii2n)-{-(9i~A^) (64) 

can easily be established. If the correction terms are neglected, this result is 
equivalent to Simpson's rule for the division of the interval a,b in 2n equal 
slices. If the process of halving the intervals is continued, the expression 

Ax 
Soin) = —lyixo) + 2yi-^2y2-\-- • + 2yn-i + j J n = 1, 2, 4, 8 , . . . 

(65) 
can be obtained for the application of the simple trapezoid rule for each value 
of n. This result is the starting point for the application of Romberg's method. 
It is continued by application of the recursion relation that is obtained by 
generahzing of Eq. (64). It is given by 

4^S^.d2n)-S^.,in) 

^- (̂ )̂ = j;;rri ' ^̂ ^̂  
withm = 1 ,2 ,3 , . . . and n = 2'"-^ 2^, 2^+^ . . . . 

As an example of the application of Romberg's method, consider the integral 

Jo e"" -I 

that arises in Debye's theory of the heat capacity of solids.* In Eq. (67), T is 
the absolute temperature and OD is referred to as the Debye temperature. In 
the low-temperature limit the integral in Eq. (67) is given approximately by 

*Petrus Debye, Dutch-American physicist and chemist (1884-1966). 
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\{T/OD)^. This limiting expression is known as Debye's third-power law for 
the heat capacity (problem 15). It is employed in thermodynamics to evaluate 
the low-temperature contribution to the absolute entropy. 

The integral in Eq. (67) cannot be evaluated analytically. However, for 
a given upper limit T/OD, it can be calculated, in principle to any desired 
precision, with the application of the methods outlined above. The results for 
T /OD = 1.6 are summarized in Table 1. 

Table 1 Evaluation of Eq. (67) with T/OD = 1.6. 

n 

1 
2 
4 
8 
16 
32 
64 

(Trapezoid) So(n) 

0.8289332462284 
0.74868638720142 
0.724310280204 
0.71795245734086 
0.71634660087305 
0.71594411304265 
0.71584342712365 

(Simpson) Si{n) 

0.72193743419243 
0.71618491120487 
0.71583318305313 
0.71581131538377 
0.7158099504325 
0.71580986515063 

(Milne) S2{n) 

0.7158014096724 
0.71580973450967 
0.71580985753913 
0.71580985943573 
0.71580985946513 

S3(n) 

0.71580986664995 
0.71580985949197 
0.71580985946584 
0.71580985946559 

The slowest part of the construction of this table is the evaluation of the 
entries in the first column. The simple trapezoid rule, as given by Eq. (65), 
is applied with successive sectioning of the slices. It can be seen that 
by descending the column a limiting value can, in principle, be obtained. 
However, the convergence is very slow. With the use of the recursion relation 
given by Eq. (66), each successive pair of entries in the first column can be 
employed to calculate the values presented in the second column. The results 
shown for this example are equal to those obtained by Simpson's method 
[Eq. (61)]. 

The third column of Table 1 is calculated by applying the recursion relation 
to the values shown in the second column, etc. It corresponds to the method 
of Milne.* It is apparent that the convergence becomes much more rapid with 
each successive column. For this particular example the same limiting values 
is obtained as either n ov m becomes very large. 

13.6 ZEROS OF FUNCTIONS 

13.6.1 Newton's method 

Given a function /(JC), if its derivatives can be evaluated numerically, 
Newton's method can often serve as an algorithm for the determination of 

* William. E. Milne, American mathematician (1890-1971). 
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the zeros of the equation f(x) = 0. Assume that XQ is an estimated value of 
one of the roots. Then, at least in principle, an improved value of the root is 
given by 

X = xo-{- AJC, (68) 

where Ax = -f(xo)/f\xo). The next approximation is found by replacing XQ 
by X in Eq. (68) to get a new value of Ax. This procedure is continued as long 
as is necessary to obtain the desired accuracy. Usually, after a few successive 
approximations, the value of the derivative will change little; hence, f\x) 
need not be recalculated each time. It should be obvious that the solution will 
be found more rapidly if the initial value XQ is wisely chosen. 

13.6.2 The bisection method 

In the application of the bisection method it is assumed only that the function 
f(x) is continuous. It requires that two initial values of x, say Xa and Xb, be 
chosen so that they straddle the desired zero. Thus, f(x^) and f(x\y) will have 
opposite signs and their product will be negative. Now, take the midpoint x^ = 
(jCa + x\y)/2 and calculate /(jCm). If, for example, the product /(Xa)/(xm) < 0, 
the desired root lies between jCa and jc^. The midpoint between these two limits 
is then calculated and the process is repeated to the desired degree of accuracy. 
Here again, the better the choice of the initial limits, the fewer the number of 
bisections that will be required. 

13.6.3 The roots: an example 

The function f(x) = (5-x)e^ — 5 arises in the theory of black-body radiation. 
Obviously, it has a zero at jc = 0. A plot of this function (Fig. 8) shows that 
it has a second zero near x = 5. As this function appears to be well behaved 
in this region, Newton's method might be expected to yield a value for the 
second root. 

If, as a guess, the initial value of x is chosen to be JCQ = 4.5, convergence 
to the value x =4.96511 will occur within a few iterations. On the other 
side, where x > 5, even wilder guesses will yield the same, correct answer. 
However, if XQ = 4 is taken as a starting point, disaster will result. Reference 
to the plot of this function in Fig. 8 indicates that this point is at the maximum. 
As the slope is then equal to zero, the computer will yield a "division by zero" 
message for the calculation of Ax and the method fails. Of course if XQ = 3 
were chosen as the initial value, the procedure will converge to the root at 
JC = 0. Clearly, the function must be plotted if such pitfalls are to be avoided. 

As the bisection method does not depend on the derivatives of the function 
in question, it can be applied with confidence, even if there are stationary 
points within the chosen limits, JCa and JCb. However, convergence is often 
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Fig. 8 The function f{x) = (5-x)e'' — 5 as a function of x. 

somewhat slower. It is to be emphasized that it is assumed in this method 
that the function is continuous between the chosen limits. Here again, it is 
essential to plot the function before undertaking the evaluation of its roots. 

A final remark should be added that applies to both of the methods outlined 
above. As both are iterative, any computer program must specify either the 
number of iterations or the precision of the desired result. Or better, both 
should be included and employed - whichever comes first. 

PROBLEMS 

1. Make the indicated substitution to yield Eq. (2). 

2. Develop the logarithms in Eqs. (2) and (3) to obtain Eq. (4). 

3. Show that the Gaussian function given by Eq. (4) is correctly normalized. 

4. Verify Eqs. (12) and (13). 

5. Derive the expressions for m and b in Eq. (16). Ans. Eqs. (20) and (21) 

6. Verify the least-squares fit to the data given in Fig. 1-1. 

7. Show that in the applicafion of linear, midpoint interpolation 

X = 

and thus A is given by Eq. (24). 
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8. Derive the general expression for 0 [Eq. (31)]. 

9. Verify the matrix A given by Eq. (34). 

10. Derive Eq. (39). 

11. Check the relations given by Eqs. (46)-(50). 

12. Construct the matrix given in Eq. (51). 

13. Carry out the matrix multiplication indicated to obtain Eq. (53). 

14. Prove Eq. (64). 

15. Derive Debye's third-power law. 


