
6 Partial Differential Equations 

Although the title of this chapter is general, it will be concerned only with 
the most important examples of partial differential equations of interest to 
physicists and chemists. Fortunately, the equations involved in virtually all of 
these applications can be solved by the very powerful method of separation 
of variables. 

A partial differential equation is one with two or more independent variables. 
The separation of these variables, if it can be carried out, yields ordinary 
differential equations which can, in most cases, be solved by the various 
methods presented in Chapters 3 and 5. The general approach to this problem 
will now be illustrated by a number of examples that are fundamental in 
physics and chemistry. 

6.1 THE VIBRATING STRING 

Consider a flexible string of length t that is stretched between two points by a 
constant tension r. It will be assumed that the tension is sufficient so that the 
effect of gravity can be neglected. Furthermore, the string is uniform, with a 
density (mass per unit length) equal to p. The x axis is chosen along the direc­
tion of the string at rest and the displacement of the string is in the y direction. 

6.1.1 The wave equation 

Now consider the displacement of a segment of the string, A^, as shown in 
Fig. 1. Its mass is equal to p^s and, according to Newton's second law of 
motion, 

af2 
Zy(x + AJC) - Ty(x) = pAs^:^, (1) 

where d^y/dt^ is its acceleration in the y direction. From Fig. 1 [see also 
Eq.(3-51)], 

{Asf^{Axf + iAyf = iAxf + (Ax^^ ^ {Axf, (2) 
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Fig. 1 Segment of a string. 

as in the limit of small displacements, the slope approaches zero. Furthermore, 
in this limit Xy = rdy/dx and tj,: ^ r. Then Eq. (1) becomes 

fdy\ fdy\ 1 . d'y . ^'y ... 

or. 
1 d^y 

(4) 

The quantity c = ^r/p is known as the phase velocity. It is the speed at 
which waves travel along the string. Clearly, the left-hand side of Eq. (4) 
represents the one-dimensional Laplacian operating on the dependent variable. 
This expression can be easily generalized to represent wave phenomena in two 
or more dimensions in space. 

6.1.2 Separation of variables 

In the application of the method of separation of variables to Eq. (4), it is 
assumed, without initial justification, that the dependent variable can be written 
as a product, viz. 

y(x,t) = X(x)i^(t). (5) 

Substitution of Eq. (5) into Eq. (4) yields 

(fX(x) 
cH{t)- = X{x) 

d^^it) 
djc2 " " ^ ' dr2 ' 

which, after division by y{x, t) = Z(x)i^(r), becomes 

c^ d^X(x) _ 1 d^i^it) 

X(x) djc2 ~ J(t) dt^ 

(6) 

(7) 
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The left-hand side of Eq. (7) does not depend on the time r; it is only a 
function of the coordinate JC. On the other hand, the right-hand side of this 
equation depends only on the time. As t and x are independent variables, each 
side of Eq. (7) must be equal to a constant. Furthermore, it must be the same 
constant, if Eq. (7) is to hold. This argument, which will be employed often in 
subsequent examples, is the basis of the method of the separation of variables. 
Clearly, the constant in question can be chosen at will. For convenience in 
this example, it will be set equal to —co^. 

The method illustrated above allows Eq. (7) to be decomposed into two 
ordinary differential equations, namely, 

-L- ri^ 

and 

+ a)'-»it) = 0 (8) 

- ^ + -XM = 0. (9) 

These two equations, which have the same form, have already been solved 
(see Section 5.2). One form of the general solution in each case is 

i^(t) = A sin cot + B cos cot (10) 

and 

( cox \ / cox \ 

—j-\-Dcosi^—j, (11) 
respectively. The constants A and B appearing in Eq. (10) are of course the 
two arbitrary constants of integration arising from the general solution to the 
second-order differential equation for t. These constants can only be evaluated 
with the aid of the appropriate initial conditions. 

6.1.3 Boundary conditions 

In the present example it will be assumed that the string is fixed at each end, 
as is the case for musical instruments such as the violin and the guitar. Clearly, 
the string cannot vibrate at its ends; thus, Z(0) = 0 and X(l) =0 for a string 
of length I (see Fig. 2). These conditions are imposed on the general solution 
in order to determine the constants of integration. From Eq. (11) it is evident 
that X{0) = D = 0. However, the remaining solution is X(x) = C sin(cox/c), 
which must vanish at the other end of the string, where x = i. Clearly, C 
cannot be equated to zero, as the resulting solution is trivial; that is, X{x) = 0 
for all values of x. However, as shown in Section 5.4.1, if the argument 
of sine is replaced by nnx/l, the condition X(£) = 0 will be fulfilled if n 
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Fig. 2 String with fixed ends: (a) the plucked string; (b) the struck string. 

is an integer. Thus, the solution for the spatial part of the problem is of 
the form 

(niix\ 
X{x) = Csin[-^), (12) 

Equation (12) represents a standing wave in space with a wavelength A, 
determined by the condition Inx/X = nnx/l or A, = 2l/n. This result is, 
aside from notation, the same as that obtained for the quantum mechanical 
problem of the particle in a box [see Eq. (5-68) and Fig. 5-4a]. It should be 
noted that the vibrations of the string are quantized, although the problem 
is a classical one. The quantization arises in both classical and quantum-
mechanical cases from the boundary conditions. The integers n, which arise 
naturally, determine the characteristic values - or often, eigenvalues (German: 
Eigenwerte). The corresponding functions, given in this case by Eq. (12), 
are the eigenfunctions. This subject will be developed in more detail in the 
following chapter. 

A particular solution to Eq. (5) can now be written as 

yi 
/ X T̂  / X a / X . /nnx\ r , , . [n7Tct\ ^ , [nnctX 

W(X, 0 = Xn{x)i^n{t) = sin ( - y - j ^n SlU f — — 1 -f Bn' COS ( — — 1 

(13) 
where the coefficient C has been absorbed in the new constants. An and Bn . 
The general solution is then given by 

E r̂-̂  /nnx\\ , ln7Tct\ , /nnctX 

yn(x,t) = 2^sin ( - 7 - j \^n sin l—^j-hBn cos ( - y " I 
(14) 
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6.1.4 Initial conditions 

The remaining arbitrary constants A!^ and B'^ are determined by the initial 
conditions. They depend on the manner in which the string is put into oscilla­
tion, as treated in Section 5.2.2 for the oscillation of the classical pendulum. 
There were two simple possibiUties illustrated: (i) corresponds to a plucked 
string (as in the guitar) and leads to Eq. (5-36), while (ii) describes the action 
of a hammer in the piano, which strikes a string; the mathematical expression 
in this case is given by Eq. (5-38). These methods of exciting the vibration of 
the string are shown in Fig. 2. 

With these ideas on mind, Eq. (14) can now be considered more generally. 
With the application of condition (i) at r = 0 

y(x,o)=x:B><-«(^). (15) 

This expression represents the expansion of an arbitrary function y(x,0) in 
a series of sines.* To determine the coefficient B^, multiply both sides of 
Eq. (15) by sin {mixx/1) and integrate from jc = 0 to x = £. Then, 

C^ , ^̂  /nnx\ , ^ , f^ /nnx\ /mnxx , ,̂ ^^ 
j y{x,0)sin[-^)dx = Y,B'^j sin [-j-) sin (—^) dx. (16) 

With m an integer the use of the relations 

[^ . /nnx\ . /m7Tx\ f 0, if n ^ m , ,_ , 
/ sin sin I )dx = \ . ,^ .̂  , (17) 

Jo \ t ) \ i ) \ t/2, if n=m ' 

yields the expression 

K = jJ y(x,0)sin{^)dx. (18) 

The arbitrary constant 5^ is thus determined in the general solution given by 
Eq. (14). See problem 1. 

As for the second arbitrary constant, recourse is made to condition (ii) 
above. Namely, 

A > m ( - — ) , (19) 

* Equation (15) is an example of a Fourier series [Joseph Fourier, French mathematician 
(1768-1830)]. 
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where j ( jc ,0)=:0 is the initial velocity. By a procedure similar to that 
employed above, the coefficients A^ are found to be 

K = / uoU) sin I — - ) dx (20) 
nnc Jo \ i / 

(problem 3). From Eqs. (18) and (20) it is evident that if the string has no 
initial velocity, the constants A^ are equal to zero, while if the string has no 
initial displacement, the constants 5^ are equal to zero. 

Each term in Eq. (14) represents a standing wave. For each value of n the 
frequency of vibration is given by 

v N - = - / ^ . (21) 

The fundamental vibrational frequency is that with n = I, while the frequen­
cies of the harmonics or overtones are obtained with n = 2,3,4... . Specifi­
cally, n = 2 is called the "second harmonic" in electronics and the "first 
overtone" in musical acoustics. Both terms are employed, often erroneously, 
in the description of molecular vibrations (see Chapter 9). 

As an example of the appHcation of condition (i) above, consider the plucked 
string (see Fig. 2). The string is displaced at its midpoint by a distance h and 
released ai t = 0. Thus, the initial conditions are 

, ^. [ 2hx/i 0<x <i/2 ,^^, 
^^^ ' ^^= 2/z(£-x)/€ i/2<x<l ^^^^ 

and ^(jc, 0) = 0. Substitution of Eq. (22) in Eq. (18) yields the relation 

'^^^2hx . /n7Tx\ , r^ 

li/2 

^n /7Tn\ 
= —TT sin (^-), (with n odd) (24) 

TT'^n'^ V 2 / 

B'-^ 
^"-n 

' f^^^ 2hx /n7zx\ f^ 2h /n7tx\ ^ 
(23) 

8/i 

for the integration constant. These results can be substituted into Eq. (14) to 
obtain 

/37rc?\ Sh r /nx\ /TTCA 1 /37Tx\ ( 
y{x, /) = —- sin I — ) cos I I sin cos I 

(25) 
which describes the vibration of the string after release from its initial posi­
tion (problem 2). The first term represents the fundamental vibration, while 
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the second corresponds to the second overtone (n = 3). The latter has an 
ampUtude which is one ninth that of the fundamental, and thus a relative 
intensity of 1/81. The odd overtones (even harmonics), which have nodes in 
the center, are not excited because the string was plucked at that point (see 
Fig. 5-4a). 

As musicians know, it is the relative intensities of the various members of 
the overtone series that determine the timbre or tone quality of sound. It is 
easy to distinguish the sound of a flute from that of the clarinet, although the 
listener may not know why. The sound of the flute has a relatively intense 
first overtone, while the boundary conditions imposed on the vibrating air 
column in the clarinet result in the suppression of all odd overtones. Such 
phenomena are of course much easier to visualize on a stringed instrument. 
Ask a violinist for a demonstration of the natural harmonics of a given 
string. 

6.2 THE THREE-DIMENSIONAL HARMONIC OSCILLATOR 

The classical harmonic oscillator in one dimension was illustrated in 
Section 5.2.2 by the simple pendulum. Hooke's law was employed in the 
form / = —Kx where / is the force acting on the mass and K is the force 
constant. The force can also be expressed as the negative gradient of a 
scalar potential function, V{x) = \KX^, for the problem in one dimension 
[Eq. (4-88)]. Similarly, the three-dimensional harmonic oscillator in Cartesian 
coordinates can be represented by the potential function 

V{x, y, z) = \K,X^ + \Kyy^ + \K^Z^. (26) 

where the force constants K^, Ky and K^ define Hooke's law in the corre­
sponding directions. 

6.2.1 Quantum-mechanical applications 

In the analogous quantum-mechanical problem the kinetic energy of the system 
is represented by the operator — (^^/2m)V^, as developed in the following 
chapter. Its one-dimensional analog was already employed in Eq. (5-64). Thus, 
the Schrodinger equation for the three-dimensional harmonic oscillator is 
given by 

2m 
V V U , y^ z) + i^KjcX^ + ^Kyy^ -h ^/c,z^)V^(x, y, z) = £\l/{x, y, z). 

(27) 
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With the Laplacian written in Cartesian coordinates, Eq. (27) becomes 

( fi" d^ \ \ ( n" 3^ 1 2\ 

(-2;^a^ + 2'̂ "̂ j ^̂ "'̂ '̂ ^ + (-2;;̂ a? + 2'̂ ^̂  j ^̂ "'̂ '̂ ^ 

+ ( - ^ ^ + \K,ZA fix, y, z) = sfix, y, z). (28) 

The separation of variables is accomplished by substituting 

xl;{x,y,z) = X{x)Y{y)Z(z) (29) 

and dividing by the same expression. The result is 

1 / ^2 92 1 \ \ I ti^ d^ \ 
,2 

- : ^ T ^ + ^Kx^ ^ (^) + ^77T -^^r^ + ^"yy ^ W 

Each term on the left-hand side of Eq. (30) is a function of only a single 
independent variable. Each term is, therefore, equal to a constant, such that 
Sx -\- ^y -\- ^z = ^' The first term is identified as 

+ -K,X^\X(X)=S,, (31) 
X{x) \ 2m dx^ 

an ordinary, second-order differential equation. Analogous relations for the 
terms in y and z are easily obtained. 

To put Eq. (31) into a recognizable form, it is convenient to change the inde­
pendent variable by substituting § = Inxyf^mJTi, where v^ = ^Kx/mlln 
is the classical frequency of oscillation in the x direction (see Section 5.2.2). 
Then with a = Isx/hv^, Eq. (31) becomes 

i Z ^ + (^_^2)^(^)^0, (32) 

which, aside from notation, is the same as Eq. (5-82). Its solution can then 
be expressed in terms of the Hermite polynomials, with the energy given by 
Eq. (5-92) in the form 

Sx = hv%x + \). (33) 

where Uĵ  = 0, 1, 2, . . . , the vibrational quantum number in the x direction. 
Clearly, the same procedure can be applied to the equations for Y{y) and Z(z), 
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with similar results. The total energy for the three-dimensional oscillator is 
then given by 

8 = hv',(v, + i ) + hv^yivy + i ) + hv'^iv, + i ) . (34) 

6.2.2 Degeneracy 

An example of the application of Eq. (34) is shown in Fig. 3, where the energy 
has been calculated for various values of the three (independent) quantum 
numbers Vx, Vy and v^. The classical vibrational frequencies were chosen so 
that Vx ~\- Vy -^ v^ = constant. Thus, the minimum energy, that of the ground 
state (0, 0, 0), is obtained when all three quantum numbers are equal to zero 
and is the same for all combinations shown in Fig. 3. In the first case, in which 
v^ ^ Vy y^ y^ the frequencies were arbitrarily chosen in the proportion Vx : 
Vy : v^ = l.O : lA : 1.2. The resulting energy levels are shown in the figure. 
It should be noted that on several cases, e.g. the levels 0, 2, 0; 1, 0, 1, two 
different combinations of the three quantum numbers yield the same value 
for the energy. These levels are said to be degenerate, that is, two different 
wavefunctions yield exactly the same energy. In this case the degeneracy is 
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Fig. 3 Energy levels of the three-dimensional harmonic oscillator. The degree of 
degeneracy of each level is shown in parenthesis. 
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due to the particular values of the vibrational frequencies, so it is called an 
"accidental" degeneracy. Since two different wavefunctions contribute to the 
degenerate pair, the level is doubly degenerate, as indicated by (2) in Fig. 3. 

A second combination of the vibrational frequencies is that in which v^ = 
v^ ^ v^. The calculated energy levels are shown in the second column of 
Fig. 3. Here, the proportion of the vibrational frequencies has been chosen to 
be Vx : Vy : v^ = 1.05 : 1.05 : 1.2. The system now has a natural symmetry, 
since the two directions x and y are equivalent. The result is an increase 
in the degeneracy of the vibrational levels, an important consequence of the 
symmetry of the problem. 

Finally, the combination for which v^ = v^ = v^ corresponds to an isotropic 
potential, one in which the three spatial directions are equivalent. The resulting 
energy levels are shown in the last column of Fig. 3, where the vibrational 
frequencies have been chosen in the proportions Uĵ  : f̂  : f̂  = 1.1 : 1.1 : 1.1. 
The degree of degeneracy for each energy level is shown in parentheses. 
Clearly, the increased degeneracy of the system is the result of the increased 
symmetry. This problem will be analyzed with the aid of the theory of groups 
in Chapter 8. 

The energy of the isotropic harmonic oscillator in three dimensions can be 
written as 

s = hv^iv, + û  + u, + f) = hv^iv + f) (35) 

where v = Vx -^ Vy -\- v^. Thus, for a given value of u, v^ can take the values 
Ujc = 0, 1, 2 , . . . i>, or i; + 1 different values. Then, Vy = 0,1,2,.. .v — v^, 
that is, f + 1 — Ujc values, leaving only one possibility for i;̂ , namely, v^ = 
V — Vx — Vy. Hence the total number of combinations of the three quantum 
numbers for a given value of v is given by 

V V V / I 1 \ 

(u + 1 - u j = (i; + 1) ^ 1 - ^ u, = (u + l)(i; + 1 ) -
i;^=0 i;^=0 i;^=0 

2 

= (i; + l ) ( ^ + l ) . (36) 

This expression* has been used to calculate the degeneracies shown in 
parentheses in the last column of Fig. 3. 

*Note the general relations J2k=o 1 = « + 1 and J2l=o^ = n(n -\-l)/2 that were used in 
deriving Eq. (36). 
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6.3 THE TWO-BODY PROBLEM 

6.3.1 Classical mechanics 

Consider a system composed of two particles of masses m\ and m2 in three 
dimensions. Three coordinates are necessary to specify the position of each 
particle. In a Cartesian coordinate system the total energy can be written as 

s = y (i? + y2 ^ zi) + y C i ^ + j ^ + zl) + V(xi,yu ZUX2, yi. Z2), (37) 

where the first two terms in Eq. (37) represent the classical kinetic energy of 
the system and the third the potential energy. The positions of the particles 
with respect to the origin fixed in space (O in Fig. 4) are specified by the 
vectors r\ and r2, whose components are x\,y\, z\ and xi, yi, zi, respectively. 
The position of the center of mass (cm) is defined by the relation \a\\m\ — 
\a2\m2. The vector r = a i +^2 represents the separation between the two 
particles, which have here been assumed to be spherical. Thus, the relations 
«i = [^2/(^1 + rn2)]r and ^2 = N 1/(^1 + ^^2)]^ define the center of mass 
of the two-particle system. By inspection of the two triangles in Fig. 4 the 
following vector relations are easily established: R =r\ -\-a\ and /? = r2 — a2-
Substitution for ai and ^2 leads to the expressions 

ri=R ——r (38) 
m\ -\-m2 

and 

r2=R+ "^^ r . (39) 
m\ + m2 

In terms of components, Eqs. (38) and (39) correspond to six relations 
such as 

xx=X-—x (40) 

o 

Fig. 4 The two-body problem. 
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and 
JC2 == X + —X, (41) 

where X, F, Z are the Cartesian components of the vector R which specify 
the position of the center of mass. Analogous relations are easily written for 
the other components. The reduced mass, defined by /x = mimi/imx + ^2), 
has been introduced in Eqs. (40) and (41). From Eq. (37) the kinetic energy 
is given by 

or 

T = | ( i 2 + ^2 ^ z^) + ^(X^ + y2 + Z^), (42) 

after substitution of the time derivatives of Eqs. (40) and (41) and writing the 
total mass as M = mi -f m2. The kinetic energy can equally be expressed in 
terms of the momenta. Thus, the components of the conjugate momenta are 
of the form 

Px = ^-r= M-^, (43) 
ax 

and similarly for the five others. Their substitution in Eq. (42) results in an 
expression for the kinetic energy as a function of the momenta. This step 
is essential before the transformation of the classical formulation into the 
quantum-mechanical one. The result in this case is given by 

r = — H- (44) 
2/x 2M 

(problem 6). 
The classical kinetic energy of the system has now been separated into the 

effect of displacement of the center of mass of the system, with momentum P 
and that of the relative movement of the two particles, with momentum/;. In 
the absence of external forces, the interaction of the two (spherical) particles is 
only a function of their separation, r. That is, the potential function appearing 
in Eq. (37) depends only on the "internal" coordinates x, y, z. 

6.3.2 Quantum mechanics 

In the quantum mechanical appHcations of the two-body problem, the classical 
energy of the system becomes the Hamiltonian operator.* The conversion 

*William Rowan Hamilton, Irish mathematician and astronomer (1805-1865). 
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is accomplished by replacing each momentum vector by the corresponding 
operator, as shown in the following chapter, viz. 

fi 
P -^ T'^x,y,z (45) 

I 

and 

P ^ -Vx,r,z. (46) 
I 

Substitution in Eq. (44) yields the Hamiltonian for this problem, 

H = f + Vix, y, z) - - | ; ^ V^ .̂,, - ^^l.y.z + ^C-̂ - ̂ . ^)- (47) 

The Schrodinger equation, with s the total energy, is then 

Hg(x, y, z, X, Y, Z) = sg(x. y, z, X, Y, Z). (48) 

It can be separated by the substitution 

g(x, y, z, X, y, Z) = i/r(jc, y, z)^(X, F, Z), (49) 

followed by division by the same function. The result can be written in the 
form 

^lr{x,y,z)2ix '-̂ '̂  

V^ y „^(X, Y,Z) = e (50) 

The first two terms on the left-hand side of Eq. (50) are functions only of 
the internal coordinates, while the third term depends only on the external 
coordinates X, F, Z. Therefore, each must be equal to a constant, such that 
their sum is equal to s. Thus, if 

1 fi^ 
Wl, ^xlrix, y, z) + V{x, y, z) = ei„„ (51) 

f{x,y,z)2^l "•'•'' 

r'^ly.z'^C^' y, Z) = e - Sin, = Sex,, (52) ^ ' -72 

t?(X, Y, Z)1M 

and the separation of the internal and external coordinates has been accom­
plished. After multiplication of Eq. (52) by j?(X, K, Z) it can be recognized 
as the Schrodinger equation for a free particle of mass M = m\-\-m2 and 
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energy equal to Sext- This energy is not quantized unless boundary condi­
tions are applied. The problem can be further separated into equations for 
the particle in each Cartesian direction. It should be noted that the sepa­
ration of variables to yield Eqs. (51) and (52) is only possible because 
the potential function for the free particle is independent of the external 
coordinates. 

Multiplication of Eq. (51) by xj/ix, y, z) yields the Schrodinger equation for 
the relative movement of the two particles. However, the Cartesian coordinates 
employed are not "natural" for this problem. In particular, if, as has been 
assumed, the particles are spherical, the interaction potential depends only on 
their distance of separation, r. The problem then reduces to the movement 
of a hypothetical particle of mass /x in the central field of a potential V(r). 
The various applications of this result depend specifically on the form of this 
potential function. 

6.4 CENTRAL FORCES 

6.4.1 Spherical coordinates 

With Eq. (51) written in the form 

-V^ + V(r) xlr{x, y, z) = Sint^ix, y, z), (53) 

it is now necessary to convert the Laplacian operator into spherical polar 
coordinates, which correspond to the symmetry of the potential function. This 
operation can be carried out by direct substitution of the relations 

X = r sin 0 cos cp 

y = r sin 0 sin (p 

z = rcosO, (54) 

where the new coordinates r, 0, cp are defined in Fig. 5. The direct change 
of variables is given in Appendix V. However, the method developed in 
Chapter 4 is much easier. With the use of Eq. (54) the appropriate scale factors 
calculated from Eq. (4-73) are: hr = l.he = r and h^p = r sin 0. Substitution 
of these quantities in Eq. (4-100) leads directly to the result 

v̂  - 1 a / j O X 1 3 / d\ 1 d^' 
(55) 
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Fig. 5 Spherical coordinates. 

for the Laplacian operator and 

dr = hrhehfpdrdOdcp = r^ sin OdrdOd(p 

for the volume element [see Eq. (4-96)]. 
Equation (52) can now be rewritten in spherical coordinates as 

h^ 

2iir^ dr\ dr) sinOdOy dO J sin' ^Odcp^j 

(56) 

+ V(r) 

X \l/(r,0,(p) = Sint^(r,0,(p), (57) 

This form of Schrodinger's equation can be separated with the use of the 
substitution 

xlf{r,0.(p) = Rir)Y{0^(p). (58) 

The result is the partial differential equation for Y(0,(p), 

lsindd0\ 39 J stride d<p^ J ^ v,y^^, 

and the ordinary differential equation for R{r), 

dr \ dr 

r) \ lixr^ 

+ fi" 
[£,„, - V{r)\R{r) = ^R{r). 

(59) 

(60) 
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6.4.2 Spherical harmonics 

Equation (59) can be further separated by substituting Y(0,(p) = @(0)^((p) 
and multiplying by sin'^0. After division by S(0)^((p), the result is 

sin 6 d 

0(^d^ 

/ d0(^)\ 1 d^^iw) . 

Clearly, the second term on the left-hand side is equal to a constant, say —m^. 
The resulting equation for O ((/?), 

d^^((p) . 
d(^2 

is of the same form as Eq. (5-29). A particular solution is, therefore, an expo­
nential function of an imaginary argument, viz. 

0(^ ) = ^'^^. (63) 

The coordinate (p is cyclic in the sense that on physical grounds the exponential 
must have the same value when (p is advanced by 2n. That is, the condition 
^((p) = ^((p-\-2n) must be fulfilled for the function to be single-valued. 
Then, 

which implies ^^^'^ = 1, and restricts m to the values 0, ± 1 , ± 2 , . . . . The 
normaUzation of this function is accomplished with the use of the factor . ^ 
such that 

f (D*a>d(̂  = ^i^ f "^ e-^^'^e^'^'^dcp = 27r JV;̂  = 1. 

The functions are then given by 

(65) 

c|>(^) = ^=e'^^. (66) 
V27r 

with m = 0, ± 1 , ± 2 , . . . , as before. 
The substitution of —rrp- for the second term on the left-hand side of Eq. (60) 

yields the equation for 0(^) , 

1 d / d 0 ( ^ ) \ m^O{0) 

sinO do \ do J sin^ 0 
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It is convenient to make the substitutions z = cos 0 and 0(^) = P(z). The 
result, 

<-^'^-^K^-T^l—• « 
is identical to Eq. (5-112). Its solution is expressed in terms of the associated 
Legendre polynomials, which when normalized, are the functions St^miO), 
with £ = 0, 1, 2 , . . . and m = 0, ± 1 , ± 2 , . . . , ±i. Furthermore, the separa­
tion constant can be identified SLS fi = i(l + 1), as given by Eq. (5-119). The 
products 

<t>m((p)ee,m(0) = Y^iO,(p) (69) 

are the spherical harmonics [see Eq. (5-129)]. These functions are solutions 
for the angular dependence of the wavefunction for all central force problems. 
In real form they are often referred to as atomic orbitals (see Appendix III). 

The radial part of the wavefunction depends on the potential function that 
describes the interaction of the two particles. Several examples which are 
important in chemistry and physics will now be summarized. 

6.5 THE DIATOMIC MOLECULE 

Within the framework of the Born-Oppenheimer approximation*, a diatomic 
molecule consists of two nuclei that are more-or-less attached by the surroun­
ding electron cloud. Often the specific form of the resulting potential function 
is not known. However, if a chemical bond is formed between the two nuclei, 
the potential function displays a minimum at a distance that corresponds to 
the equilibrium bond length. Furthermore, the energy necessary to break the 
chemical bond, the dissociation energy, is often evaluated by spectroscopic 
measurements. It can be concluded, then, that the potential function has the 
general form shown in Fig. 6. A simple derivation of the Born-Oppenheimer 
approximation is presented in Section 12.1. 

In this application Eq. (60) becomes 

— ' ^ * + — - — 0 — + y(r) e^) 2/xr2 dr \ dr J l/jir^ 
R(r)=SintR(r), (70) 

where /x is now the reduced mass of the two nuclei and, by tradition, the 
quantum number I has been replaced by the letter / . 

*Max Bom, British physicist (1882-1970); Julius Robert Oppenheimer, American physicist 
(1904-1967). 
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V(r) 

Fig. 6 Potential functions for a diatomic molecule. The dashed curve represents the 
harmonic approximation. 

6.5.1 The rigid rotator 

In the simplest case the interatomic distance is held constant, e.g. r = r̂  and 
the potential energy is set equal to zero at this point. Furthermore, as r = r̂  
is constant, the first term on the left-hand side of Eq. (70) vanishes. These 
conditions describe the rigid rotator, for which the energy is given by 

6rr = 
r7(7 + l) (71) 

with 7 = 0, 1, 2 , . . . , as before. The quantity 4 = M^̂  is the moment of 
inertia of the rigid diatomic molecule. 

6.5.2 The vibrating rotator 

Returning now to the general expression for R{r) [Eq. (70)], it is convenient to 
change the dependent variable by substituting Rir) = (l/r)S(r). The result is 

dr2 fi^ 

^ 7 ( 7 + 1) 
-\-Sint-Vir) Sir) = 0. (72) 

As the molecule executes small-amplitude vibrations with respect to the equi­
librium intemuclear distance, it is appropriate to develop the potential function 
in a Taylor series about that position. Thus, 

V(r) = K + 
dV 

d7 (r - re) + 1 ^ 
2 d ^ 

(r - r,)^ + . (73) 
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The potential energy can be set equal to zero at the equilibrium position; then, 
Ve = 0. Furthermore, at equilibrium the potential is minimal. 

dV 

dT 
= 0. 

And, in the harmonic approximation cubic and higher terms are neglected, so 
that Eq. (73) becomes 

1 
V(r) = -K(r-re)\ (74) 

the harmonic potential function shown in Fig. 6. The force constant is defined by 

d^yi 
K = 

dr2 

the curvature of the potential function evaluated at the equilibrium position. 
Higher terms in Eq. (73) contribute to the anharmonicity of the vibration. This 
question will be discussed in Chapter 9. 

In the rigid-rotator, harmonic-oscillator approximation Eq. (72) becomes 

(fSir) 111 
dr2 + TV ^£int-y{r) S{r) = 0, (75) 

where s = Syib + Srr and jc = r — r^. Equation (75) can be put into the form 
of Eq. (32) by analogous substitutions. Thus, Syib = hv^{v -j- ^), with v^ = 
»JKI\XI171 and f = 0, 1, 2 , . . . , as before. The result yields an expression 
which is the sum of the energy of a harmonic oscillator and that of a rotating 
molecule which does not oscillate! In spite of this apparent contradiction, 
the result is the starting point for the interpretation of the rotation-vibration 
spectrum of a diatomic molecule, as observed, for example, in the mid-infrared 
spectral region. 

6.5.3 Centrifugal forces 

A simple improvement on this model can be made by remarking that the 
first term in brackets in Eq. (72) contains the factor 1/r^. As the amplitude 
of the vibration is small, a binomial series development can be made (see 
Section 2.10), namely. 

1 1 

(Xe + X)̂  

1 / Ix 3JC2 \ 
(76) 
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where r = r^ -{- x. Clearly, the rigid-rotator approximation employed above 
corresponds to jc = 0 in Eq. (76). If, however, the linear term in x is retained, 
the effect of the centrifugal force can be estimated. 

Reconsideration of Eq. (72) with 

^ _ 1 / _ 2 x \ 

suggests a suitable substitution by translation of the x axis, namely x = ^ -\- a, 
that will immediately simplify the problem. The constant a is chosen by setting 
the resulting linear terms in f equal to zero. The result is 

a = — . (77) 

With 6 = Syib — Srr, as before, Eq. (75) becomes 

^4 72 / J \ \\2 d^S(£) 2M 
d?2 + ^2 S(g) = 0. (78) 

This equation can be identified as that of the harmonic oscillator, with a 
supplementary constant term inside the brackets. The energy of the rotating, 
vibrating molecule is then given by 

The first term, with i; = 0, 1, 2 , . . . , is the energy of the harmonic oscillator. 
The second, with 7 = 0, 1, 2 , . . . , is that of the rigid rotator, while the last 
term expresses the nonrigidity of the rotating molecule. Classically speaking, 
as the molecule turns more rapidly, the bond length increases due to centrifugal 
force and, thus, the energy decreases - as expressed by the negative sign in 
Eq. (79). 

The energy of the diatomic molecule, as given by Eq. (79) does not take 
into account the anharmonicity of the vibration. The effect of the cubic and 
quartic terms in Eq. (73) can be evaluated by application of the theory of 
perturbation (see Chapter 12). 

6.6 THE HYDROGEN ATOM 

The representation of the angular part of the two-body problem in spherical 
harmonics, as developed in Section 6.4, is applicable to any system composed 
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of two spherical particles in free space. For the hydrogen atom, composed of 
a proton and an electron, the reduced mass is equal to 

M = 
ntenip 

nie -\- nir 
m. (80) 

where the approximation in which /x is replaced by the mass electronic rrie is 
satisfactory in most chemical applications (see problem 9). 

6.6.1 Energy 

The interaction between the two particles in this system is described by 
Coulomb's law,* in which the force is proportional to the inverse-square of 
the distance between the particles and —e^ is the product of the charges on 
the electron and the proton. The corresponding potential function is then of 
the form 

^2 

Vir) = 
471 Sor' 

(81) 

a s , / = —WV(r). The constant 4n£o in the denominator of Eq. (81) arises 
if international units are employed. With this potential function, as shown in 
Fig. 7, the radial equation [Eq. (60)] can be written for the hydrogen atom as 

2fMr^ dr e^) + Ansor 
R{r) = sR(r), (82) 

Distance, r(bohr) 

5 10 

n = 4 

Fig. 7 The potential function V{r) and the energy levels for the hydrogen atom. 

*Charles de Coulomb, French physicist (1736-1801). 
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where ^ has been replaced by £(€ + 1). It is now convenient to make the 
substitutions 

a = ::— and y = —^. 

Then, with the change in the independent variable, p = 2ar, Eq. (82) becomes 

d^R{p) 2 dR{p) 
dp2 

+ 2^ji_w^_n«„=„, ,83) 
p dp LP P^ 4 J 

which is identical to Eq. (5-130). The solutions are then given by the Laguerre 
polynomials, as summarized in Section 5.5.3. There it was shown that because 
of the boundary conditions, y is equal to a positive integer which was identified 
as the principal quantum number, n. Then, from the substitutions made above, 
the energy of the hydrogen atom is given by 

with of course ẑ = 1, 2, 3 , . . . . Some of the values of the energy are indicated 
in Fig. 7, where it is seen that with n = 1 the ground-state energy is equal to 
— 13.6 eV or —0.5 hartree. 

The spectrum of atomic hydrogen, as observed in absorption or emission, 
arises from transitions between the various possible states. In emission, a 
spectral fine results from a transition such as ^2 -> ̂ i and the application of 
Eq. (84) leads to the expression 

where RH is known as the Rydberg constant* (see problem 10). 

6.6.2 Wavefunctions and the probability density 

The radial parts of the wavefunctions for the hydrogen atom can be constructed 
from the general form of the associated Laguerre polynomials, as developed in 
Section 5.5.3. However, in applications in physics and chemistry it is often the 
probabihty density that is more important (see Section 5.4.1). This quantity in 
this case represents the probability of finding the electron in the appropriate 
three-dimensional volume element. 

*Johannes Robert Rydberg, Swedish physicist (1854-1919). 



6. PARTIAL DIFFERENTIAL EQUATIONS 141 

As a simple example, consider the hydrogen atom in its ground state, n = I. 
The radial part of the wavefunction is given by 

R,Mr) = 2a-'^'e-^^^\ (86) 

where 

ao 
Ansoh 

= 0.53 A = 1 bohr 

is the radius of the first Bohr orbit.* Although this quantity has no direct signifi­
cance in modern quantum theory, it serves as a useful measure of distance 
on the atomic scale (see Appendix II). A number of the radial functions are 
given in Appendix IV. For the ground state the probability density is then of 
the form 

4^2 2^2 Pi,o(r) = [/?i,o(r)]V^ = -Ir/ao (87) 

It is plotted in Fig. 8. 
It is of interest to determine the position of the maximum of the function 

Pi,o(^), as this distance describes the effective radius of the hydrogen atom 
in its ground state. The derivative of Eq. (87) is equal to 

dPi,o(r) 

dr 

8r / r \ 
= - 1 - - ( -2r/ao (88) 

This function is equal to zero at the origin, at infinity and, of course at r = 
ao = 0.53 A, the position of the maximum. It is perhaps surprising that the 

^i,o(^) 

P2,o(r) 

^s.oC'-) 

5 10 15 
Radial distance, r (bohr) 

20 

Fig. 8 Radial probability density for the hydrogen atom in /is states. 

*Niels Bohr, Danish physicist (1885-1962). 
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most probable radial distance of the electron corresponds exactly to the radius 
of the first orbit in the old quantum theory. However, it must be emphasized 
that the probability distribution is now spherical, with a diameter of 2ao, or 
approximately one Angstrom* (10~^^ m) for the atom in its ground state. 

6.7 BINARY COLLISIONS 

6.7.1 Conservation of angular momentum 

The interaction of two particles was analyzed classically in Section 6.3.1. 
The resulting expression for the relative momentum can be written in vector 
notation as 

p = /xr. (89) 

Then, following Newton, 

or 

P = ^ir =f (90) 

r - - ^ . (91) 

Vector multiplication of Eq. (91) by r yields 

r x r = - r x / - = 0 . (92) 

M 
But the left-hand side of Eq. (92) can be developed [Eq. (4-41)] as 

d 
r X r = —(r X r) — (r X r) = 0, (93) 

dt 

and thus, 
d 
— ( r x r ) = 0 (94) 
dt 

and by integration, 
rxr=C, (95) 

The vector C is a constant which is perpendicular to the plane defined by r and 
the corresponding velocity r, and hence the momentum/?. This plane, which 
is called the collision plane, can be employed to describe the entire encounter 
between the two particles. 

* Andres Jonas Angstrom, Swedish physicist (1814-1871). 
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6.7.2 Conservation of energy 

The kinetic energy of the hypothetical particle of mass /x in the collision plane, 
perpendicular to the z axis, can be expressed by 

T = \^i(x^ + f)^ (96) 

or, in polar coordinates, with the substitutions x = r cos î  and y = r sirn^, by 

T = ifi(r-^r^^), (97) 

The total energy is then the sum of Eq. (97) and the appropriate potential 
function for the particle interaction. 

It is useful to define two parameters that, with the potential function, char­
acterize the collision, namely, 

(i) The impact parameter b, which is the distance of closest approach in the 
absence of the potential, and 

(ii) The initial relative speed g of the colliding particles. 

Before the advent of the coUision (r = oo) the potential is equal to zero and 
the kinetic energy ^/xg^ is the total energy of the system. Furthermore, the 
angular momentum is given by figb. Thus, the conservation of energy and 
angular momentum throughout the collision can be written as 

i/xg2 = i /x( r+r2^2) + y(r) (98) 

and 
fibg = fir^i}, (99) 

respectively, where the right-hand side of Eq. (99) is obtained by taking the 
partial derivative of Eq. (97) with respect to i}. Equations (98) and (99) can 
be combined by eliminating î  to yield 

i/xg^ = i/xr^ + ^/xg2 ("^^ + y ( , ) . (100) 

Integration of Eq. (100) allows r to be determined as a function of time; 
i.e. the trajectory of the coUision can be specified if the potential function is 
known. 

6.7.3 Interaction potential: LJ (6-12) 

Many different empirical or semi-empirical functions have been suggested to 
represent the interaction between two spherical particles. The most successful 
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is certainly that of Lennard-Jones.* Specifically, it is the Lennard-Jones (6-12) 
function, which has the form 

V(r) = 46 (7)'^-(7)1' (101) 

where the parameter cr, an effective molecular diameter, is the value of r 
for which V(r) = 0. The minimum in the potential-energy curve occurs at 
r = y a , where its depth is equal to s. The inverse sixth power of r represents 
the attractive forces which exist even between spherical particles. They are 
due to dispersion (London^) forces, as well as dipole-induced-dipole forces 
which are present when the particles are polar. The inverse twelfth function 
of the distance is an empirical representation of the repulsive forces, which 
increase rapidly at short distances. It is used for mathematical convenience. 
In general, the Lennard-Jones (6-12) potential function provides a useful and 
reliable representation of the interaction of atoms and nonpolar - or slightly 
polar - molecules. 

A typical Lennard-Jones (6-12) function is plotted in Fig. 9. Often, the 
second term on the right-hand side of Eq. (100) is added to represent an 
effective potential function, viz. 

Veff(r) = V(r) + i/x^' (?)• (102) 

w 

Fig. 9 Solid line: A typical Lennard-Jones (6-12) potential; dotted line: the effective 
potential for given values of the initial parameters g and b. 

*John Edward Lennard-Jones, British theoretical physical chemist (1894-1954). 

^Fritz London, German Physicist (1900-1954). 
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Fig. 10 Binary collision with respect to the center of mass of the system. 

The dotted curve shown in Fig. 9 is an example, although it is but one in a 
family, as the effective potential depends on g and b, the parameters which 
define the initial conditions of a binary collision. 

6.7.4 Angle of deflection 

The result of a binary collision is specified in classical mechanics by the 
angle of deflection, x- It is defined in Fig. 10, where the trajectory of the 
hypothetical particle of mass fi is illustrated. It can be seen that when r is 
minimal, that is at the distance of closest approach, the angle i^niin is related 
to the angle of deflection by 

7T 2^rr 

From Eqs. (99) and (100), r and d^ can be related by 

dr 

d^ ^ \b)i \ng^ r2' 

(103) 

(104) 

the negative sign has been chosen so that r decreases with d^ along the 
incoming trajectory. Thus, ?>̂ /„ can be calculated from the expression 

^n. 
1 dr 

, 2 1 ' - 2 ' 
(105) 

which, with Eq. (103), allows the angle of deflection xib, g) to be determined. 
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For dilute, real gases, where ternary and higher collisions can be neglected, 
the angle of deflection can be employed to evaluate a number of physical 
properties. Of course appropriate distributions of the values of g and b must 
be introduced. The resulting expressions for the virial coefficients and the 
transport properties (viscosity, diffusion and thermal conductivity) are quite 
complicated. The interested reader is referred to advanced books on this 
subject. 

6.7.5 Quantum mechanical description: The phase shift 

In the classical picture of two-particle interaction outlined above, it was 
shown that a specific quantity - the angle of deflection - characterizes a given 
coUision. However, on the atomic-molecular scale, quantum theory is more 
appropriate. According to the uncertainty principle of Heisenberg,* the simul­
taneous determination of the position and momentum of a particle cannot be 
made. Thus, it is not possible to determine exactly the angle of deflection in 
a collision. In the following development it is found that the phase shift of 
the radial wave function characterizes a binary, quantum-mechanical collision. 
This quantity, then, which is analogous to the classical angle of deflection, 
determines the final quantum-mechanical expressions describing the physical 
properties of low-pressure, real gases. 

The radial equation for the quantum mechanical, two-particle system 
[Eq. (60)] can be applied to the present problem by employing the identity 
)6 = €(£ + 1), as before, and making the substitution R(r) = (l/r)S(r) used 
to obtain Eq. (72). The result is given by 

dr2 
^^\^[s-V(r)]\S{r)=0. (106) 

r2 n' 

In the case of an ideal gas, V(r) = 0 and Eq. (106) becomes 

^2cr^\ ( 0(0 ^ \ \ . ,2^2 d ^ ) 
dr2 

+ j-W_fl)^^j,„,^,^„^ ,,07, 

where the total energy has been equated to \[xg^. Equation (106) can be 
compared to the general form of Bessel's equation given in Section 5.5.5. It 
is in the present application 

•^^^'^U.^ZIX^,,,^,, „08) 
( « ' - ^ ) dr2 

*Weraer Heisenberg, German physicist (1901-1976). 
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Table 1 Characteristics of a binary collision. 

Classical mechanics Quantum mechanics 

X{b, g): Angle of deflection rj^(a): Phase shift 
b: Impact parameter I: Angular momentum quantum number 
/jigb: Angular momentum fiy/i(i + 1): Angular momentum 
g: Initial relative speed a = /ig/fi = 2n/X: Wavenumber of the 

deBroglie wave 
lig: Relative momentum ati: Relative momentum 

with the identifications a^ = ^?g^/fi^ and p — ±{l + ^). The general solution 
to Bessel's equation is of the form 

Zp{ar) = Ada)J^^Liar) + Bt{a)N_^_Uar), (109) 

where Ji_^i(ar) and N_^_i(ar) are the Bessel and Neumann functions, re­
spectively. As the Neumann function becomes infinite in the limit as r ^^ oo, 
the coefficient Bi(a) must be set equal to zero. Furthermore, the function 
Ji^i(ar) becomes sinusoidal for large values of r, representing the deBrogUe 
wave of the hypothetical particle. 

In the more general problem in which V(r) / 0, the previous boundary 
condition is not applicable. Thus, B^ia) ^ 0 and the asymptotic solution for 
large values of r is given by [Eq. (5-148)] 

S(r) = rR(r) ^ [A^ia) + BJia)]''^^ sin [ar - {ni + ^^(«)]. (110) 

The argument of the sine in Eq. (110) now contains the phase shift, 

m{a) = tan-\{-\YBdct)/Adot)l (HI) 

which represents the net result of the encounter. This quantity is analogous to 
the angle of deflection in the classical case. 

The results of this section can be summarized by comparison with those 
of the previous one. Thus, the corresponding quantities in the classical and 
quantum-mechanical treatments of the collision problem are given in Table 1. 

PROBLEMS 

1. Derive Eqs. (18) and (20). 

2. Derive Eq. (25). 
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3. Apply the initial conditions for the struck string (ii) to obtain the expression for 
y{x,t). 

4. Carry out the separation of variables to obtain Eq. (30). 

5. Verify Eq. (36). 

6. Show that the kinetic energy in the two-body problem in terms of momenta is 
given by Eq. (44). 

7. Make the substitution Y{0, cp) = &{0)^((p) in Eq. (59) to obtain Eq. (61). 

8. Verify the expression for a, as given by Eq. (77). 

9. Calculate the error in the energy of the ground state of the hydrogen atom if 
the reduced mass of the two-particle system is replaced by the mass of the 
electron. Ans. 0.05% 

10. Calculate the Rydberg constant from the values of the fundamental constants [see 
Eq. (84) and Appendix II]. Ans. RH = 109,737.5 cm-^ 

11. Muonium, "atom number zero", is composed of a positron and an electron. 
Calculate the Rydberg constant for this species. 

Ans. 54,898.6 cm"^ 


