List of
publications of Dezső Boda
For PDF versions of papers, please,
contact me: dezsoboda@gmail.com
2019 2018 2017
2016 2015 2014
2013 2012 2011
2010 2009 2008
2007 2006 2005
2004 2003 2002
2001 2000 1999
1998 1997 1996
1995
2019
To top
[115] M. Valiskó, T. Kristóf, D. Gillespie, D. Boda. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences.
AIP Advances 8(2):025320, 2018.
2018
To top
[115] M. Valiskó, T. Kristóf, D. Gillespie, D. Boda. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences.
AIP Advances 8(2):025320, 2018.
2017
To top
[114] D. Fertig, E. Mádai, M. Valiskó, D. Boda. Simulating ion transport with the NP+LEMC method. Applications to ion channels and nanopores. Hung. J. Ind. Chem. 45(1):73-84, 2017.
[113] E. Mádai, M. Valiskó, A. Dallos, D. Boda. Simulation of a model nanopore sensor: ion competition underlies device behavior. J. Chem. Phys. 147(24):244702, 2017.
[112] Z. Ható, M. Valiskó, T. Kristóf, D. Gillespie, D. Boda. Multiscale modeling of a rectifying bipolar nanopore: explicit-water versus implicit-water simulations. Phys. Chem. Chem. Phys. 19(27):17816-17826, 2017.
[111] B. Matejczyk, M. Valiskó, M.-T. Wolfram, J.-F. Pietschmannn, D. Boda. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo. J. Chem. Phys. 146(12):124125, 2017.
[110] M. Valiskó, D. Boda. Activity coefficients of individual ions in LaCl3 from the II+IW theory. Mol. Phys. 115(9-12):1245-1252, 2017.
2016
To top
[109] Z. Ható, D. Boda, D. Gillespie, J. Vrabec, G. Rutkai, T. Kristóf. Simulation study of a rectifying bipolar ion channel: detailed model versus reduced model. Condens. Matt. Phys. 19(1):13802, 2016.
2015
To top
[108] M. Valiskó, D. Boda. Comment on ``The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye−Hückel Theory. J. Phys. Chem. B, 119(44):14332-14336, 2015.
[107] T. Nagy, D.
Henderson, D. Boda. Correction
to ``Simulation of an electrical double layer model with a low
dielectric layer between the electrode and the electrolyte. J. Phys. Chem. B, 119(35):11967-11968, 2015.
[106] M. Valiskó, D. Boda. Unraveling
the behavior of the individual ionic activity coefficients on the basis of the balance of ion-ion and ion-water interactions J. Phys. Chem. B, 119(4):1546-1557, 2015.
[105]
D.
Boda, G. Leaf, J. Fonseca, B. Eisenberg. Energetics of ion
competition in the DEKA selectivity filter of neuronal sodium channels
Cond. Matt. Phys., 18(1):13601,
2015.
2014
To top
[104]
M. Valiskó, D. Boda. The effect of
concentration- and temperature-dependent dielectric constant on the
activity coefficient of NaCl electrolyte solutions J. Chem. Phys., 140(23):234508,
2014.
[103] C. Berti, S. Furini, D. Gillespie, D. Boda, R. S. Eisenberg, E.
Sangiorgi, C. Fiegna. A 3-D
Brownian Dynamics simulator for the study of ion permeation through
membrane pores J. Chem. Theory
Comp., 10(8):2911-2926, 2014.
[102]
D. Boda. Monte Carlo simulation of
electrolyte solutions in biology: in and out of equilibrium. Ann. Rep. Comp. Chem., Editor R. A.
Wheeler, volume 10, pages
127–163. Elsevier, 2014.
[101] D. Boda, É. Csányi, D. Gillespie, T.
Kristóf. Dynamic
Monte Carlo simulation of coupled transport through a narrow
multiply-occupied pore J. Phys.
Chem. C, 118(1):700-707, 2014.
[100]
D. Boda, R. Kovács, D.
Gillespie, T. Kristóf.
Selective transport through a model calcium channel studied by Local
Equilibrium Monte Carlo simulations coupled to the Nernst-Planck
equation J. Mol. Liq.,
189:100, 2014.
2013
To top
[99]
D. Boda, D. Gillespie. Calculating The Electrostatic
Potential Profiles Of Double Layers From Simulation Ion Density Profiles Hung. J. Ind. Chem.,
41(2):125-132, 2013.
[98]
D. Boda, M. Valiskó, I. Szalai.
The origin of the
interparticle potential of electrorheological fluids Condens. Matt. Phys., 16(4):43002,
2013.
[97]
M. Valiskó, D. Henderson, D. Boda..
Selective adsorption of
ions in charged slit-systems
Condens. Matt. Phys., 16(4): 43601, 2013.
[96] D. Boda, D. Henderson, D. Gillespie.
The role of solvation
in the binding selectivity of the L-type calcium channel J. Chem. Phys., 139(5):055103, 2013.
2012
To top
[95] Z.
Ható, D. Boda, T. Kristóf. Simulation of Steady-State
Diffusion: Driving Force Ensured by Dual Control Volumes or Local
Equilibrium Monte Carlo. J.
Chem. Phys., 137(5):054109,
2012.
[94] T.
Kristóf, D. Boda, I. Szalai. An analytic solution for the
magnetization of two-dimensional ferrofluids based on the mean
spherical approximation. J.
Phys.-condens. Matt., 24(33)336002,
2012.
[93] R. Kovács, M.
Valiskó, D. Boda. Monte Carlo simulation of the
electrical properties of electrolytes adsorbed in charged slit-systems.
Cond. Matt. Phys., 15(2):23803, 2012.
[92] D. Boda, D. Gillespie. Steady state
electrodiffusion from the Nernst-Planck equation coupled to Local
Equilibrium Monte Carlo simulations. J. Chem. Theory Comp., 8(3):824-829,
2012.
[91] É.
Csányi, D. Boda, D. Gillespie,
and T. Kristóf. Current
and selectivity in a model sodium channel under physiological
conditions: Dynamic Monte Carlo simulations. Biochim.
et Biophys. Acta - Biomembranes,
1818(3):592-600, 2012.
2011 To top
[90] T. Nagy, D.
Henderson, D. Boda. Simulation of an electrical
double layer model with a low dielectric layer between the electrode
and the electrolyte. J. Phys.
Chem. B, 115(39):11409-11419,
2011.
[89] D. Boda, D. Henderson, B. Eisenberg,
and D. Gillespie. A
method for treating the passage of a charged hard sphere ion as it
passes through a sharp dielectric boundary. J. Chem. Phys., 135(6):064105, 2011.
[88] J.
Vincze, M. Valiskó, and D. Boda.
Response to "Comment
on 'The nonmonotonic concentration dependence of the mean activity
coefficient of electrolytes is a result of a balance between solvation
and ion-ion correlations' " [J. Chem. Phys. 134, 157101 (2011)]". J. Chem. Phys., 134(15):157102, 2011.
[87] T. Nagy, M.
Valiskó, D. Henderson, D. Boda. The Behavior of 2:1 and 3:1
Electrolytes at Polarizable Interfaces. J. Chem. Eng. Data,
56(4):1316-1322, 2011.
[86] D.
Henderson and D. Boda. Mean spherical
approximation for the Yukawa fluid radial distribution function. Mol. Phys., 109(7-10):1009-1013,
2011.
[85] Z.
Máté, I. Szalai, D. Boda, and
D. Henderson. Heat
capacities of the dipolar Yukawa model polar fluid. Mol. Phys., 109(2):203-208, 2011.
[84] D. Boda, J. Giri, D. Henderson, B.
Eisenberg, and D. Gillespie. Analyzing the components of
the free energy landscape in a calcium selective ion channel by Widoms
particle insertion method. J.
Chem. Phys., 134(5):055102, 2011.
[83] J.
Giri, J. Fonseca, D. Boda, D.
Henderson, and B. Eisenberg. Self-organized models
of selectivity in calcium channels. Phys. Biol., 8(2):026004, 2011.
2010 To top
[82] J.
Vincze, M. Valiskó, and D. Boda.
The nonmonotonic
concentration dependence of the mean activity coeffcient of
electrolytes is a result of a balance between solvation and ion-ion
correlations. J. Chem. Phys.,
133(15):154507, 2010.
[81] M.
Malasics, D. Boda, M. Valiskó,
D. Henderson, and D. Gillespie. Simulations of
calcium channel block by trivalent ions: Gd3+ competes with permeant
ions for the selectivity filter. Biochim.
et Biophys. Acta - Biomembranes, 1798(11):2013-2021,
2010.
[80] G. Rutkai, D. Boda, and T. Kristóf. Relating binding affinity
to dynamical selectivity from dynamic Monte Carlo simulations of a
model calcium channel. J. Phys.
Chem. Lett., 1(14):2179-2184,
2010.
[79] A.
Malasics and D. Boda. An efficient iterative
grand canonical Monte Carlo algorithm to determine individual ionic
chemical potentials in electrolytes. J. Chem. Phys., 132(24):244103, 2010.
[78] M.
Valiskó, T. Varga, A. Baczoni, and D.
Boda. The structure
of strongly dipolar hard sphere fluids with extended dipoles by Monte
Carlo simulations. Mol. Phys.,
108(1):87-96, 2010.
2009 To top
[77] A.
Malasics, D. Gillespie, W. Nonner, D. Henderson, B. Eisenberg, and D. Boda. Protein structure and ionic
selectivity in calcium channels: Selectivity filter size, not shape,
matters. Biochim. et Biophys.
Acta - Biomembranes, 1788(12):2471-2480,
2009.
[76] M.
Valiskó and D. Boda. Correction to the
Clausius-Mosotti equation: the dielectric constant of nonpolar fluids
from Monte Carlo simulations. J.
Chem. Phys., 131(16):064120,
2009.
[75] D. Boda, M. Valiskó, D. Henderson,
B. Eisenberg, D. Gillespie, and1 W. Nonner. Ion selectivity in L-type
calcium channels by electrostatics and hard-core repulsion. J. Gen. Physiol., 133(5):497-509, 2009.
[74] Y. He, D.
Gillespie, D. Boda, I.
Vlassiouk, R. S. Eisenberg, and Z. S. Siwy. Tuning transport properties of
nano-fluidic devices with local charge inversion. JACS, 131(14):5194-5202, 2009.
[73]
D. Henderson and D. Boda. Insights from theory and
simulation on the electrical double layer. Phys. Chem. Chem. Phys., 11(20):3822-3830, 2009.
[72]
D. Boda, M Valiskó, D.
Henderson, D. Gillespie, B. Eisenberg, and M. K. Gilson. Ions and inhibitors in the
binding site of HIV Protease: Comparison of Monte Carlo simulations and
the linearized Poisson-Boltzmann theory. Biophys. J., 96(4):1293-1306, 2009.
2008 To top
[71] D. Boda and D. Henderson. The effects of deviations
from Lorentz-Berthelot rules on the properties of a simple mixture.
Mol. Phys., 106(20):2367-2370, 2008.
[70] D.
Gillespie and D. Boda. The anomalous mole
fraction effect in calcium channels: A measure of preferential
selectivity. Biophys. J.,
95(6):2658-2672, 2008.
[69] D.
Gillespie, D. Boda, Y. He, P.
Apel, and Z.S. Siwy. Synthetic
nanopores as a test case for ion channel theories: The anomalous mole
fraction effect without single filing. Biophys. J., 95(2):609-619, 2008.
[68] A.
Malasics, D. Gillespie, and D. Boda.
Simulating prescribed
particle densities in the grand canonical ensemble using iterative
algorithms. J. Chem. Phys.,
128(12):124102, 2008.
[67] D. Boda, W. Nonner, D. Henderson, B.
Eisenberg, and D D. Gillespie. Volume exclusion in calcium
selective channels. Biophys. J.,
94(9):3486-3496, 2008.
2007 To top
[66] D. Di Caprio, M.
Valiskó, M. Holovko, and D. Boda.
Simple extension of a
field theory approach for the description of the double layer
accounting for excluded volume effects. J. Phys. Chem. C, 111(43):15700-15705, 2007.
[65] M. Valiskó, D.
Gillespie, and D. Boda. Selective
adsorption
of
ions with different diameter and valence at highly-charged interfaces.
J. Phys. Chem. C, 111(43):15575-15585, 2007.
[64] D. Boda, W. Nonner, M. Valiskó, D.
Henderson, B. Eisenberg, and D. Gillespie. Steric selectivity in Na
channels arising from protein polarization and mobile side chains. Biophys. J, 93(6):1960-1980, 2007.
[63]
D. Boda, M. Valiskó, B.
Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. Combined effect of pore radius
and protein dielectric coeffcient on the selectivity of a calcium
channel. Phys. Rev. Lett.,
98(16):168102, 2007.
[62] M.
Valiskó, D. Henderson, and D. Boda.
The capacitance of the
electrical double layer of valence-asymmetric salts at low reduced
temperatures. J. Mol. Liquids,
131-132:179-184, 2007.
2006 To top
[61] D. Di
Caprio, M. Valiskó, M. Holovko, and D.
Boda. Anomalous
temperature dependence of the differential capacitance in valence
asymmetric electrolytes. Comparison of Monte Carlo simulation results
and the field theoretical approach. Mol. Phys., 104(22-24):3777-3786, 2006.
[60] A.
Malasics, D. Boda, and M.
Valiskó. Monte Carlo
simulation and renormalized perturbation theory study of the dielectric
properties of mixtures of polarizable hard spheres and polarizable
dipolar hard spheres. Mol. Phys.,
104(22-24):3821-3830, 2006.
[59] D. Boda, M. Valiskó, B. Eisenberg,
W. Nonner, D. Henderson, and D. Gillespie. The effect of protein
dielectric coefficient on the ionic selectivity of a calcium channel.
J. Chem. Phys., 125(3):034901, 2006.
2005 To top
[58]
D. Boda, D. Gillespie, B.
Eisenberg, W. Nonner, and D. Henderson. The Induced Charge Computation
Method and its Application in Monte Carlo Simulations of Inhomogeneous
Dielectric Systems. Ionic Soft
Matter: Novel Trends in Theory and Applications, volume 206 of NATO Science Series: II:
Mathematics, Physics and Chemistry, pages 19-44. Springer, Dordrecht,
The Netherlands, 2005.
[57] D.
Gillespie, N. Valiskó, and D. Boda.
Density functional
theory of the electrical double layer: the RFD functional. J.
Physics-condensed Matter, 17(42):6609-6626,
2005.
[56] D.
Henderson, D. Gillespie, T. Nagy, and D.
Boda. Monte
Carlo simulation of the electric double layer: dielectric boundaries
and the effects of induced charge. Mol. Phys., 103(21-23):2851-2861, 2005.
[55]
M. Valiskó and D. Boda. Dielectric constant of
the polarizable dipolar hard sphere fluid studied by Monte Carlo
simulation and theories. Condensed
Matter Phys., 8(2):357-376,
2005.
[54] D.
Henderson and D. Boda. On a conjecture
of Fawcett. J. Electroanalytical
Chem., 582(1-2):16-20,
2005.
[53] M. Valiskó and D. Boda. Relative permittivity of
polar liquids. Comparison of theory, experiment, and simulation. J. Phys. Chem. B, 109(13):6355-6365, 2005.
[52] J.
Reszko-Zygmunt, S. Sokolowski, D. Henderson, and D. Boda. Temperature dependence
of the double layer capacitance for the restricted primitive model of
an electrolyte solution from a density functional approach. J. Chem. Phys., 122(8):084504, 2005.
2004 To top
[51] M. Valiskó, D.
Henderson, and D. Boda. Competition
between
the
effects of asymmetries in ion diameters and charges in an electrical
double layer studied by Monte Carlo simulations and theories. J. Phys. Chem. B, 108(42):16548-16555, 2004.
[50] D. Boda, D. Gillespie, W. Nonner, D.
Henderson, and B. Eisenberg. Computing induced charges in
inhomogeneous dielectric media: Application in a Monte Carlo simulation
of complex ionic systems. Phys.
Rev. E, 69(4):046702,
2004.
[49] T.
Kristóf, D. Boda, and D.
Henderson. Phase
separation in mixtures of Yukawa and charged Yukawa particles from
Gibbs ensemble Monte Carlo simulations and the mean spherical
approximation. J. Chem. Phys.,
120(6):2846-2850, 2004.
[48] D. Boda, T. Varga, D. Henderson, D.
D. Busath, W. Nonner, D. Gillespie, and B. Eisenberg. Monte Carlo simulation
study of a system with a dielectric boundary: Application to calcium
channel selectivity. Mol.
Simulation, 30(2-3):89-96,
2004.
[47] D. Boda, D. Henderson, P. Plaschko,
and W. R. Fawcett. Monte
Carlo
and density functional theory study of the electrical double layer: The
dependence of the charge/voltage relation on the diameter of the ions.
Mol. Simulation, 30(2-3):137-141, 2004.
2003 To top
[46] M.
Valiskó, D. Boda, J. Liszi,
and I. Szalai. A
systematic Monte Carlo simulation and renormalized perturbation
theoretical study of the dielectric constant of the polarizable
Stockmayer fluid. Mol. Phys.,
101(14):2309-2313, 2003.
[45] T.
Kristóf, D. Boda, J. Liszi, D.
Henderson, and E. Carlson. Vapour-liquid
equilibrium of the charged Yukawa fluid from Gibbs ensemble Monte Carlo
simulations and the mean spherical approximation. Mol. Phys., 101(11):1611-1616, 2003.
2002 To top
[44]
Y. Yang, D. Boda, D.
Henderson, and D. D. Busath. Computer
simulation studies of the selectivity and sonductance of a model
calcium channel. J. Comp.
Electronics, 1(3):353-357,
2002.
[43] D. Boda, D. Henderson, L. M. Y.
Teran, and S. Sokolowski. The
application of density functional theory and the generalized mean
spherical approximation to double layers containing strongly coupled
ions. J. Physics-condensed Matter,
14(46):11945-11954, 2002.
[42] D. Boda and D. Henderson. Computer simulation of
the selectivity of a model calcium channel. J. Physics-condensed Matter, 14(41):9485-9488, 2002.
[41]
D. Boda, D. D. Busath, B.
Eisenberg, D. Henderson, and W. Nonner. Monte Carlo simulations of
ion selectivity in a biological Na channel: Charge-space competition.
Phys. Chem. Chem. Phys., 4(20):5154-5160, 2002.
[40] T.
Kristóf, J. Liszi, and D. Boda.
The extrapolation
of phase equilibrium curves of mixtures in the isobaric-isothermal
Gibbs ensemble. Mol. Phys.,
100(21):3429-3441, 2002.
[39] M.
Valiskó, D. Boda, J. Liszi,
and I. Szalai. The
dielectric constant of polarizable fluids from the renormalized
perturbation theory. Mol. Phys.,
100(20):3239-3243, 2002.
[38] D. Boda, D. D. Busath, and D.
Henderson. Simulation of the
selectivity of a calcium channel. Appl.
Surf. Science, 196(1-4):154-156,
2002.
[37] D. Boda, D. Henderson, and D. D.
Busath. Monte Carlo
study of the selectivity of calcium channels: improved geometrical
model. Mol. Phys., 100(14):2361-2368, 2002.
[36] D. Boda, T. Kristóf, J. Liszi, and
I. Szalai. The
extrapolation of the vapour-liquid equilibrium curves of pure fluids in
the isothermal Gibbs ensemble. Mol.
Phys., 100(12):1989-2000,
2002.
[35] D. Boda, W. R. Fawcett, D.
Henderson, and S. Sokolowski. Monte
Carlo, density functional theory, and Poisson-Boltzmann theory study of
the structure of an electrolyte near an electrode. J. Chem. Phys., 116(16):7170-7176, 2002.
2001 To top
[34] D. Boda, D. Henderson, and D. D.
Busath. Monte Carlo
study of the effect of ion and channel size on the selectivity of a
model calcium channel. J. Phys.
Chem. B, 105(47):11574-11577,
2001.
[33] D. Boda, T. Kristóf, J. Liszi, and
I. Szalai. A new
simulation method for the determination of phase equilibria in mixtures
in the grand canonical ensemble. Mol.
Phys., 99(24):2011-2022,
2001.
[32]
M. Valiskó, D. Boda, J. Liszi,
and I. Szalai. Relative
permittivity of dipolar liquids and their mixtures. Comparison of
theory and experiment. Phys.
Chem. Chem. Phys., 3(15):2995-3000,
2001.
[31] L.
Mier-Y-Teran, D. Boda, D.
Henderson, and S. E. Quinones-Cisneros. On the low temperature
anomalies in the properties of the electrochemical interface. A
non-local free-energy density functional approach. Mol. Phys., 99(15):1323-1328, 2001.
[30] D. Boda, D. Henderson, A.
Patrykiejew, and S. Sokolowski. Density
functional study of a simple membrane using the solvent primitive model.
J. Colloid Interface Science, 239(2):432-439, 2001.
[29]
M. Holovko, V. Kapko, D. Henderson, and D. Boda. On the influence of ionic
association on the capacitance of an electrical double layer. Chem. Phys. Lett., 341(3-4):363-368, 2001.
2000 To top
[28] T.
Kristóf, D. Boda, I. Szalai,
and D. Henderson. A
Gibbs ensemble Monte Carlo study of phase coexistence in the solvent
primitive model. J. Chem. Phys.,
113(17):7488-7491, 2000.
[27] B.
V. R. Tata, D. Boda, D.
Henderson, A. Nikolov, and D. T. Wasan. Structure of charged colloids
under a wedge confinement. Phys.
Rev. E, 62(3):3875-3881,
2000.
[26] D. Boda, D. D. Busath, D. Henderson,
and S. Sokolowski. Monte
Carlo simulations of the mechanism for channel selectivity: The
competition between volume exclusion and charge neutrality. J. Phys. Chem. B, 104(37):8903-8910, 2000.
[25]
D. Henderson, D. Boda, and D.
T. Wasan. A
generalized mean spherical approximation of the anomalies in the
electrochemical double layer for strong ionic interactions. Chem. Phys. Lett., 325(5-6):655-660, 2000.
[24]
P. S. Crozier, R. L. Rowley, D. Henderson, and D. Boda. A corrected 3D Ewald
calculation of the low effective temperature properties of the
electrochemical interface. Chem.
Phys. Lett., 325(5-6):675-677,
2000.
[23] S. Varga, D. Boda, D. Henderson, and S.
Sokolowski. Density
functional theory and the capillary evaporation of a liquid in a slit.
J. Colloid Interface Science, 227(1):223-226, 2000.
[22] D. Boda, D. Henderson, A.
Patrykiejew, and S. Sokolowski. Simulation and density
functional study of a simple membrane. II. Solvent effects using the
solvent primitive model. J.
Chem. Phys., 113(2):802-806,
2000.
[21] D. Boda and D. Henderson. The capacitance of the
solvent primitive model double layer at low effective temperatures.
J. Chem. Phys., 112(20):8934-8938, 2000.
[20]
P. Bryk, A. Patrykiejew, S. Sokolowski, D. Boda, and D. Henderson. Ions at membranes: a density
functional approach. Phys. Chem.
Chem. Phys., 2(2):269-276,
2000.
1999
To top
[19] D. Boda, D. Henderson, R. Rowley,
and S. Sokolowski. Simulation
and density functional study of a simple membrane separating two
restricted primitive model electrolytes. J. Chem. Phys., 111(20):9382-9388, 1999.
[18] D. Boda, D. Henderson, K. Y. Chan,
and D. T. Wasan. Low
temperature anomalies in the properties of the electrochemical
interface. Chem. Phys. Lett.,
308(5-6):473-478, 1999.
[17] D. Boda, K. Y. Chan, D. Henderson,
D. T. Wasan, and A. D. Nikolov. Structure and pressure of a
hard sphere fluid in a wedge-shaped cell or meniscus. Langmuir, 15(13):4311-4313, 1999.
[16] I.
Szalai, D. Henderson, D. Boda,
and K. Y. Chan. Thermodynamics
and structural properties of the dipolar Yukawa fluid. J. Chem. Phys., 111(1):337-344, 1999.
[15] D.
Henderson, D. Boda, I. Szalai,
and K. Y. Chan. The
mean spherical approximation for a dipolar Yukawa fluid. J. Chem. Phys., 110(15):7348-7353, 1999.
[14] D. Boda, D. Henderson, and K. Y.
Chan. Monte Carlo
study of the capacitance of the double layer in a model molten salt.
J. Chem. Phys., 110(11):5346-5350, 1999.
1998
To top
[13] D.
Henderson, D. Boda, K. Y.
Chan, and D. T. Wasan. Phase separation in
fluid additive hard sphere mixtures? Mol. Phys., 95(2):131-135, 1998.
[12] D. Boda, K. Y. Chan, and D.
Henderson. Monte
Carlo simulation of an ion-dipole mixture as a model of an electrical
double layer. J. Chem. Phys.,
109(17):7362-7371, 1998.
1997
To top
[11] D. Boda, K. Y. Chan, and I. Szalai. Determination of
vapour-liquid equilibrium using cavity-biased grand canonical Monte
Carlo method. Mol. Phys.,
92(6):1067-1072, 1997.
1996
To top
[10] D. Boda, J. Liszi, and I.
Szalai. The extended NpT and
NVT plus test particle methods for the determination of vapour-liquid
equilibria of pure fluids. Magyar
Kémiai Folyóirat, 102(12):523-534,
1996.
[9]
D. Boda, T. Lukács, J. Liszi,
and I. Szalai. The isochoric-,
isobaric- and saturation-heat capacities of the Lennard-Jones fluid
from equations of state and Monte Carlo simulations. Fluid Phase Equilibria, 119(1-2):1-16, 1996.
[8]
D. Boda, B. Kalmár, J. Liszi,
and I. Szalai. Fluid-fluid
equilibrium of a mixture of non-polar and dipolar hard spheres in an
applied field. J. Chem.
Society-Faraday Transactions, 92(15):2709-2714,
1996.
[7] D. Boda, J. Liszi, and I. Szalai. A new simulation method
for the determination of the vapour-liquid equilibria in the grand
canonical ensemble. Chem. Phys.
Lett., 256(4-5):474-482,
1996.
[6] D. Boda, J. C. Winkelmann, J. Liszi,
and I. Szalai. Vapour-liquid
equilibrium of Stockmayer fluids in applied field - Application of the
NpTE plus test particle method and perturbation theory. Mol. Phys., 87(3):601-624, 1996.
1995
To top
[5] I.
Szalai, J. Liszi, and D. Boda.
The NVT plus test particle
method for the determination of the vapor-liquid-equilibria of pure
fluids. Chem. Phys. Lett.,
246(3):214-220, 1995.
[4] D. Boda, J. Liszi, and I. Szalai. Preliminary
communication - dielectric-constant of a Stockmayer fluid along the
vapor-liquid coexistence curve. Mol.
Phys., 85(3):429-434,
1995.
[3] D. Boda, J. Liszi, and I. Szalai. An extension of the NpT plus test
particle method for the determination of the vapor-liquid-equilibria of
pure fluids. Chem. Phys. Lett.,
235(1-2):140-145, 1995.
[2]
D. Boda, I. Szalai, and J.
Liszi. Influence of
static electric-field on the vapor-liquid coexistence of dipolar
soft-sphere fluids. J. Chem.
Society-faraday Transactions, 91(5):889-894,
1995.
[1] J. Liszi, D. Boda, and I.
Szalai. Perturbation
theoretical results of thermodynamic and dielectric studies on polar
fluids. ACH-Models in Chem.,
132(1-2):31-43, 1995.