List of publications of Dezső Boda

For PDF versions of papers, please, contact me: dezsoboda@gmail.com

2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995


2019     To top

[115] M. Valiskó, T. Kristóf, D. Gillespie, D. Boda. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences.   AIP Advances 8(2):025320, 2018.

2018     To top

[115] M. Valiskó, T. Kristóf, D. Gillespie, D. Boda. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences.   AIP Advances 8(2):025320, 2018.

2017     To top

[114] D. Fertig, E. Mádai, M. Valiskó, D. Boda. Simulating ion transport with the NP+LEMC method. Applications to ion channels and nanopores.  Hung. J. Ind. Chem. 45(1):73-84, 2017.

[113] E. Mádai, M. Valiskó, A. Dallos, D. Boda. Simulation of a model nanopore sensor: ion competition underlies device behavior.  J. Chem. Phys. 147(24):244702, 2017.

[112] Z. Ható, M. Valiskó, T. Kristóf, D. Gillespie, D. Boda. Multiscale modeling of a rectifying bipolar nanopore: explicit-water versus implicit-water simulations.   Phys. Chem. Chem. Phys. 19(27):17816-17826, 2017.

[111] B. Matejczyk, M. Valiskó, M.-T. Wolfram, J.-F. Pietschmannn, D. Boda. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo. J. Chem. Phys. 146(12):124125, 2017.

[110] M. Valiskó, D. Boda. Activity coefficients of individual ions in LaCl3 from the II+IW theory. Mol. Phys. 115(9-12):1245-1252, 2017.

2016     To top

[109] Z. Ható, D. Boda, D. Gillespie, J. Vrabec, G. Rutkai, T. Kristóf. Simulation study of a rectifying bipolar ion channel: detailed model versus reduced model. Condens. Matt. Phys. 19(1):13802, 2016.

2015     To top

[108] M. Valiskó, D. Boda. Comment on ``The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye−Hückel Theory. J. Phys. Chem. B,  119(44):14332-14336, 2015.

[107] T. Nagy, D. Henderson, D. Boda. Correction to ``Simulation of an electrical double layer model with a low dielectric layer between the electrode and the electrolyte. J. Phys. Chem. B, 119(35):11967-11968, 2015.

[106] M. Valiskó, D. Boda. Unraveling the behavior of the individual ionic activity coefficients on the basis of the balance of ion-ion and ion-water interactions J. Phys. Chem. B, 119(4):1546-1557, 2015.

[105] D. Boda, G. Leaf, J. Fonseca, B. Eisenberg. Energetics of ion competition in the DEKA selectivity filter of neuronal sodium channels Cond. Matt. Phys., 18(1):13601, 2015.

2014     To top

[104] M. Valiskó, D. Boda. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions J. Chem. Phys., 140(23):234508, 2014.

[103] C. Berti, S. Furini, D. Gillespie, D. Boda, R. S. Eisenberg, E. Sangiorgi, C. Fiegna. A 3-D Brownian Dynamics simulator for the study of ion permeation through membrane pores J. Chem. Theory Comp., 10(8):2911-2926, 2014.

[102] D. Boda. Monte Carlo simulation of electrolyte solutions in biology: in and out of equilibrium. Ann. Rep. Comp. Chem., Editor R. A. Wheeler, volume 10, pages 127–163. Elsevier, 2014.

[101] D. Boda, É. Csányi, D. Gillespie, T. Kristóf. Dynamic Monte Carlo simulation of coupled transport through a narrow multiply-occupied pore J. Phys. Chem. C, 118(1):700-707, 2014.

[100] D. Boda, R. Kovács, D. Gillespie, T. Kristóf. Selective transport through a model calcium channel studied by Local Equilibrium Monte Carlo simulations coupled to the Nernst-Planck equation J. Mol. Liq., 189:100, 2014.


2013     To top

[99] D. Boda, D. Gillespie. Calculating The Electrostatic Potential Profiles Of Double Layers From Simulation Ion Density Profiles Hung. J. Ind. Chem., 41(2):125-132, 2013.

[98] D. Boda, M. Valiskó, I. Szalai. The origin of the interparticle potential of electrorheological fluids Condens. Matt. Phys., 16(4):43002, 2013.

[97] M. Valiskó, D. Henderson, D. Boda.. Selective adsorption of ions in charged slit-systems Condens. Matt. Phys., 16(4): 43601, 2013.

[96] D. Boda, D. Henderson, D. Gillespie. The role of solvation in the binding selectivity of the L-type calcium channel J. Chem. Phys., 139(5):055103, 2013.


2012     To top

[95] Z. Ható, D. Boda, T. Kristóf. Simulation of Steady-State Diffusion: Driving Force Ensured by Dual Control Volumes or Local Equilibrium Monte Carlo. J. Chem. Phys., 137(5):054109, 2012.

[94] T. Kristóf, D. Boda, I. Szalai. An analytic solution for the magnetization of two-dimensional ferrofluids based on the mean spherical approximation. J. Phys.-condens. Matt., 24(33)336002, 2012.

[93] R. Kovács, M. Valiskó, D. Boda. Monte Carlo simulation of the electrical properties of electrolytes adsorbed in charged slit-systems. Cond. Matt. Phys., 15(2):23803, 2012.

[92] D. Boda, D. Gillespie. Steady state electrodiffusion from the Nernst-Planck equation coupled to Local Equilibrium Monte Carlo simulations. J. Chem. Theory Comp., 8(3):824-829, 2012.

[91] É. Csányi, D. Boda, D. Gillespie, and T. Kristóf. Current and selectivity in a model sodium channel under physiological conditions: Dynamic Monte Carlo simulations. Biochim. et Biophys. Acta - Biomembranes, 1818(3):592-600, 2012.


2011     To top

[90] T. Nagy, D. Henderson, D. Boda. Simulation of an electrical double layer model with a low dielectric layer between the electrode and the electrolyte. J. Phys. Chem. B, 115(39):11409-11419, 2011.

[89] D. Boda, D. Henderson, B. Eisenberg, and D. Gillespie. A method for treating the passage of a charged hard sphere ion as it passes through a sharp dielectric boundary. J. Chem. Phys., 135(6):064105, 2011.

[88] J. Vincze, M. Valiskó, and D. Boda. Response to "Comment on 'The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations' " [J. Chem. Phys. 134, 157101 (2011)]". J. Chem. Phys., 134(15):157102, 2011.

[87] T. Nagy, M. Valiskó, D. Henderson, D. Boda. The Behavior of 2:1 and 3:1 Electrolytes at Polarizable Interfaces. J. Chem. Eng. Data, 56(4):1316-1322, 2011.

[86] D. Henderson and D. Boda. Mean spherical approximation for the Yukawa fluid radial distribution function. Mol. Phys., 109(7-10):1009-1013, 2011.

[85] Z. Máté, I. Szalai, D. Boda, and D. Henderson. Heat capacities of the dipolar Yukawa model polar fluid. Mol. Phys., 109(2):203-208, 2011.

[84] D. Boda, J. Giri, D. Henderson, B. Eisenberg, and D. Gillespie. Analyzing the components of the free energy landscape in a calcium selective ion channel by Widoms particle insertion method. J. Chem. Phys., 134(5):055102, 2011.

[83] J. Giri, J. Fonseca, D. Boda, D. Henderson, and B. Eisenberg. Self-organized models of selectivity in calcium channels. Phys. Biol., 8(2):026004, 2011.


2010     To top

[82] J. Vincze, M. Valiskó, and D. Boda. The nonmonotonic concentration dependence of the mean activity coeffcient of electrolytes is a result of a balance between solvation and ion-ion correlations. J. Chem. Phys., 133(15):154507, 2010.

[81] M. Malasics, D. Boda, M. Valiskó, D. Henderson, and D. Gillespie. Simulations of calcium channel block by trivalent ions: Gd3+ competes with permeant ions for the selectivity filter. Biochim. et Biophys. Acta - Biomembranes, 1798(11):2013-2021, 2010.

[80] G. Rutkai, D. Boda, and T. Kristóf. Relating binding affinity to dynamical selectivity from dynamic Monte Carlo simulations of a model calcium channel. J. Phys. Chem. Lett., 1(14):2179-2184, 2010.

[79] A. Malasics and D. Boda. An efficient iterative grand canonical Monte Carlo algorithm to determine individual ionic chemical potentials in electrolytes. J. Chem. Phys., 132(24):244103, 2010.

[78] M. Valiskó, T. Varga, A. Baczoni, and D. Boda. The structure of strongly dipolar hard sphere fluids with extended dipoles by Monte Carlo simulations. Mol. Phys., 108(1):87-96, 2010.


2009     To top

[77] A. Malasics, D. Gillespie, W. Nonner, D. Henderson, B. Eisenberg, and D. Boda. Protein structure and ionic selectivity in calcium channels: Selectivity filter size, not shape, matters. Biochim. et Biophys. Acta - Biomembranes, 1788(12):2471-2480, 2009.

[76] M. Valiskó and D. Boda. Correction to the Clausius-Mosotti equation: the dielectric constant of nonpolar fluids from Monte Carlo simulations. J. Chem. Phys., 131(16):064120, 2009.

[75] D. Boda, M. Valiskó, D. Henderson, B. Eisenberg, D. Gillespie, and1 W. Nonner. Ion selectivity in L-type calcium channels by electrostatics and hard-core repulsion. J. Gen. Physiol., 133(5):497-509, 2009.

[74] Y. He, D. Gillespie, D. Boda, I. Vlassiouk, R. S. Eisenberg, and Z. S. Siwy. Tuning transport properties of nano-fluidic devices with local charge inversion. JACS, 131(14):5194-5202, 2009.

[73] D. Henderson and D. Boda. Insights from theory and simulation on the electrical double layer. Phys. Chem. Chem. Phys., 11(20):3822-3830, 2009.

[72] D. Boda, M Valiskó, D. Henderson, D. Gillespie, B. Eisenberg, and M. K. Gilson. Ions and inhibitors in the binding site of HIV Protease: Comparison of Monte Carlo simulations and the linearized Poisson-Boltzmann theory. Biophys. J., 96(4):1293-1306, 2009.


2008     To top

[71] D. Boda and D. Henderson. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture. Mol. Phys., 106(20):2367-2370, 2008.

[70] D. Gillespie and D. Boda. The anomalous mole fraction effect in calcium channels: A measure of preferential selectivity. Biophys. J., 95(6):2658-2672, 2008.

[69] D. Gillespie, D. Boda, Y. He, P. Apel, and Z.S. Siwy. Synthetic nanopores as a test case for ion channel theories: The anomalous mole fraction effect without single filing. Biophys. J., 95(2):609-619, 2008.

[68] A. Malasics, D. Gillespie, and D. Boda. Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms. J. Chem. Phys., 128(12):124102, 2008.

[67] D. Boda, W. Nonner, D. Henderson, B. Eisenberg, and D D. Gillespie. Volume exclusion in calcium selective channels. Biophys. J., 94(9):3486-3496, 2008.


2007     To top

[66] D. Di Caprio, M. Valiskó, M. Holovko, and D. Boda. Simple extension of a field theory approach for the description of the double layer accounting for excluded volume effects. J. Phys. Chem. C, 111(43):15700-15705, 2007.

[65] M. Valiskó, D. Gillespie, and D. Boda. Selective adsorption of ions with different diameter and valence at highly-charged interfaces. J. Phys. Chem. C, 111(43):15575-15585, 2007.

[64] D. Boda, W. Nonner, M. Valiskó, D. Henderson, B. Eisenberg, and D. Gillespie. Steric selectivity in Na channels arising from protein polarization and mobile side chains. Biophys. J, 93(6):1960-1980, 2007.

[63] D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. Combined effect of pore radius and protein dielectric coeffcient on the selectivity of a calcium channel. Phys. Rev. Lett., 98(16):168102, 2007.

[62] M. Valiskó, D. Henderson, and D. Boda. The capacitance of the electrical double layer of valence-asymmetric salts at low reduced temperatures. J. Mol. Liquids, 131-132:179-184, 2007.


2006     To top

[61] D. Di Caprio, M. Valiskó, M. Holovko, and D. Boda. Anomalous temperature dependence of the differential capacitance in valence asymmetric electrolytes. Comparison of Monte Carlo simulation results and the field theoretical approach. Mol. Phys., 104(22-24):3777-3786, 2006.

[60] A. Malasics, D. Boda, and M. Valiskó. Monte Carlo simulation and renormalized perturbation theory study of the dielectric properties of mixtures of polarizable hard spheres and polarizable dipolar hard spheres. Mol. Phys., 104(22-24):3821-3830, 2006.

[59] D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, and D. Gillespie. The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel. J. Chem. Phys., 125(3):034901, 2006.


2005     To top

[58D. Boda, D. Gillespie, B. Eisenberg, W. Nonner, and D. Henderson. The Induced Charge Computation Method and its Application in Monte Carlo Simulations of Inhomogeneous Dielectric Systems. Ionic Soft Matter: Novel Trends in Theory and Applications, volume 206 of NATO Science Series: II: Mathematics, Physics and Chemistry, pages 19-44. Springer, Dordrecht, The Netherlands, 2005.

[57] D. Gillespie, N. Valiskó, and D. Boda. Density functional theory of the electrical double layer: the RFD functional. J. Physics-condensed Matter, 17(42):6609-6626, 2005.

[56] D. Henderson, D. Gillespie, T. Nagy, and D. Boda. Monte Carlo simulation of the electric double layer: dielectric boundaries and the effects of induced charge. Mol. Phys., 103(21-23):2851-2861, 2005.

[55] M. Valiskó and D. Boda. Dielectric constant of the polarizable dipolar hard sphere fluid studied by Monte Carlo simulation and theories. Condensed Matter Phys., 8(2):357-376, 2005.

[54] D. Henderson and D. Boda. On a conjecture of Fawcett. J. Electroanalytical Chem., 582(1-2):16-20, 2005.

[53] M. Valiskó and D. Boda. Relative permittivity of polar liquids. Comparison of theory, experiment, and simulation. J. Phys. Chem. B, 109(13):6355-6365, 2005.

[52] J. Reszko-Zygmunt, S. Sokolowski, D. Henderson, and D. Boda. Temperature dependence of the double layer capacitance for the restricted primitive model of an electrolyte solution from a density functional approach. J. Chem. Phys., 122(8):084504, 2005.


2004     To top

[51] M. Valiskó, D. Henderson, and D. Boda. Competition between the effects of asymmetries in ion diameters and charges in an electrical double layer studied by Monte Carlo simulations and theories. J. Phys. Chem. B, 108(42):16548-16555, 2004.

[50] D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg. Computing induced charges in inhomogeneous dielectric media: Application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E, 69(4):046702, 2004.

[49] T. Kristóf, D. Boda, and D. Henderson. Phase separation in mixtures of Yukawa and charged Yukawa particles from Gibbs ensemble Monte Carlo simulations and the mean spherical approximation. J. Chem. Phys., 120(6):2846-2850, 2004.

[48] D. Boda, T. Varga, D. Henderson, D. D. Busath, W. Nonner, D. Gillespie, and B. Eisenberg. Monte Carlo simulation study of a system with a dielectric boundary: Application to calcium channel selectivity. Mol. Simulation, 30(2-3):89-96, 2004.

[47] D. Boda, D. Henderson, P. Plaschko, and W. R. Fawcett. Monte Carlo and density functional theory study of the electrical double layer: The dependence of the charge/voltage relation on the diameter of the ions. Mol. Simulation, 30(2-3):137-141, 2004.


2003     To top

[46] M. Valiskó, D. Boda, J. Liszi, and I. Szalai. A systematic Monte Carlo simulation and renormalized perturbation theoretical study of the dielectric constant of the polarizable Stockmayer fluid. Mol. Phys., 101(14):2309-2313, 2003.

[45] T. Kristóf, D. Boda, J. Liszi, D. Henderson, and E. Carlson. Vapour-liquid equilibrium of the charged Yukawa fluid from Gibbs ensemble Monte Carlo simulations and the mean spherical approximation. Mol. Phys., 101(11):1611-1616, 2003.


2002     To top

[44] Y. Yang, D. Boda, D. Henderson, and D. D. Busath. Computer simulation studies of the selectivity and sonductance of a model calcium channel. J. Comp. Electronics, 1(3):353-357, 2002.

[43] D. Boda, D. Henderson, L. M. Y. Teran, and S. Sokolowski. The application of density functional theory and the generalized mean spherical approximation to double layers containing strongly coupled ions. J. Physics-condensed Matter, 14(46):11945-11954, 2002.

[42] D. Boda and D. Henderson. Computer simulation of the selectivity of a model calcium channel. J. Physics-condensed Matter, 14(41):9485-9488, 2002.

[41] D. Boda, D. D. Busath, B. Eisenberg, D. Henderson, and W. Nonner. Monte Carlo simulations of ion selectivity in a biological Na channel: Charge-space competition. Phys. Chem. Chem. Phys., 4(20):5154-5160, 2002.

[40] T. Kristóf, J. Liszi, and D. Boda. The extrapolation of phase equilibrium curves of mixtures in the isobaric-isothermal Gibbs ensemble. Mol. Phys., 100(21):3429-3441, 2002.

[39] M. Valiskó, D. Boda, J. Liszi, and I. Szalai. The dielectric constant of polarizable fluids from the renormalized perturbation theory. Mol. Phys., 100(20):3239-3243, 2002.

[38] D. Boda, D. D. Busath, and D. Henderson. Simulation of the selectivity of a calcium channel. Appl. Surf. Science, 196(1-4):154-156, 2002.

[37] D. Boda, D. Henderson, and D. D. Busath. Monte Carlo study of the selectivity of calcium channels: improved geometrical model. Mol. Phys., 100(14):2361-2368, 2002.

[36] D. Boda, T. Kristóf, J. Liszi, and I. Szalai. The extrapolation of the vapour-liquid equilibrium curves of pure fluids in the isothermal Gibbs ensemble. Mol. Phys., 100(12):1989-2000, 2002.

[35] D. Boda, W. R. Fawcett, D. Henderson, and S. Sokolowski. Monte Carlo, density functional theory, and Poisson-Boltzmann theory study of the structure of an electrolyte near an electrode. J. Chem. Phys., 116(16):7170-7176, 2002.


2001     To top

[34] D. Boda, D. Henderson, and D. D. Busath. Monte Carlo study of the effect of ion and channel size on the selectivity of a model calcium channel. J. Phys. Chem. B, 105(47):11574-11577, 2001.

[33] D. Boda, T. Kristóf, J. Liszi, and I. Szalai. A new simulation method for the determination of phase equilibria in mixtures in the grand canonical ensemble. Mol. Phys., 99(24):2011-2022, 2001.

[32] M. Valiskó, D. Boda, J. Liszi, and I. Szalai. Relative permittivity of dipolar liquids and their mixtures. Comparison of theory and experiment. Phys. Chem. Chem. Phys., 3(15):2995-3000, 2001.

[31] L. Mier-Y-Teran, D. Boda, D. Henderson, and S. E. Quinones-Cisneros. On the low temperature anomalies in the properties of the electrochemical interface. A non-local free-energy density functional approach. Mol. Phys., 99(15):1323-1328, 2001.

[30] D. Boda, D. Henderson, A. Patrykiejew, and S. Sokolowski. Density functional study of a simple membrane using the solvent primitive model. J. Colloid Interface Science, 239(2):432-439, 2001.

[29] M. Holovko, V. Kapko, D. Henderson, and D. Boda. On the influence of ionic association on the capacitance of an electrical double layer. Chem. Phys. Lett., 341(3-4):363-368, 2001.


2000     To top

[28] T. Kristóf, D. Boda, I. Szalai, and D. Henderson. A Gibbs ensemble Monte Carlo study of phase coexistence in the solvent primitive model. J. Chem. Phys., 113(17):7488-7491, 2000.

[27] B. V. R. Tata, D. Boda, D. Henderson, A. Nikolov, and D. T. Wasan. Structure of charged colloids under a wedge confinement. Phys. Rev. E, 62(3):3875-3881, 2000.

[26] D. Boda, D. D. Busath, D. Henderson, and S. Sokolowski. Monte Carlo simulations of the mechanism for channel selectivity: The competition between volume exclusion and charge neutrality. J. Phys. Chem. B, 104(37):8903-8910, 2000.

[25] D. Henderson, D. Boda, and D. T. Wasan. A generalized mean spherical approximation of the anomalies in the electrochemical double layer for strong ionic interactions. Chem. Phys. Lett., 325(5-6):655-660, 2000.

[24] P. S. Crozier, R. L. Rowley, D. Henderson, and D. Boda. A corrected 3D Ewald calculation of the low effective temperature properties of the electrochemical interface. Chem. Phys. Lett., 325(5-6):675-677, 2000.

[23] S. Varga, D. Boda, D. Henderson, and S. Sokolowski. Density functional theory and the capillary evaporation of a liquid in a slit. J. Colloid Interface Science, 227(1):223-226, 2000.

[22] D. Boda, D. Henderson, A. Patrykiejew, and S. Sokolowski. Simulation and density functional study of a simple membrane. II. Solvent effects using the solvent primitive model. J. Chem. Phys., 113(2):802-806, 2000.

[21] D. Boda and D. Henderson. The capacitance of the solvent primitive model double layer at low effective temperatures. J. Chem. Phys., 112(20):8934-8938, 2000.

[20] P. Bryk, A. Patrykiejew, S. Sokolowski, D. Boda, and D. Henderson. Ions at membranes: a density functional approach. Phys. Chem. Chem. Phys., 2(2):269-276, 2000.


1999     To top

[19] D. Boda, D. Henderson, R. Rowley, and S. Sokolowski. Simulation and density functional study of a simple membrane separating two restricted primitive model electrolytes. J. Chem. Phys., 111(20):9382-9388, 1999.

[18] D. Boda, D. Henderson, K. Y. Chan, and D. T. Wasan. Low temperature anomalies in the properties of the electrochemical interface. Chem. Phys. Lett., 308(5-6):473-478, 1999.

[17] D. Boda, K. Y. Chan, D. Henderson, D. T. Wasan, and A. D. Nikolov. Structure and pressure of a hard sphere fluid in a wedge-shaped cell or meniscus. Langmuir, 15(13):4311-4313, 1999.

[16] I. Szalai, D. Henderson, D. Boda, and K. Y. Chan. Thermodynamics and structural properties of the dipolar Yukawa fluid. J. Chem. Phys., 111(1):337-344, 1999.

[15] D. Henderson, D. Boda, I. Szalai, and K. Y. Chan. The mean spherical approximation for a dipolar Yukawa fluid. J. Chem. Phys., 110(15):7348-7353, 1999.

[14] D. Boda, D. Henderson, and K. Y. Chan. Monte Carlo study of the capacitance of the double layer in a model molten salt. J. Chem. Phys., 110(11):5346-5350, 1999.


1998     To top

[13] D. Henderson, D. Boda, K. Y. Chan, and D. T. Wasan. Phase separation in fluid additive hard sphere mixtures? Mol. Phys., 95(2):131-135, 1998.

[12] D. Boda, K. Y. Chan, and D. Henderson. Monte Carlo simulation of an ion-dipole mixture as a model of an electrical double layer. J. Chem. Phys., 109(17):7362-7371, 1998.


1997     To top

[11] D. Boda, K. Y. Chan, and I. Szalai. Determination of vapour-liquid equilibrium using cavity-biased grand canonical Monte Carlo method. Mol. Phys., 92(6):1067-1072, 1997.


1996     To top

[10] D. Boda, J. Liszi, and I. Szalai. The extended NpT and NVT plus test particle methods for the determination of vapour-liquid equilibria of pure fluids. Magyar Kémiai Folyóirat, 102(12):523-534, 1996.

[9] D. Boda, T. Lukács, J. Liszi, and I. Szalai. The isochoric-, isobaric- and saturation-heat capacities of the Lennard-Jones fluid from equations of state and Monte Carlo simulations. Fluid Phase Equilibria, 119(1-2):1-16, 1996.

[8] D. Boda, B. Kalmár, J. Liszi, and I. Szalai. Fluid-fluid equilibrium of a mixture of non-polar and dipolar hard spheres in an applied field. J. Chem. Society-Faraday Transactions, 92(15):2709-2714, 1996.

[7] D. Boda, J. Liszi, and I. Szalai. A new simulation method for the determination of the vapour-liquid equilibria in the grand canonical ensemble. Chem. Phys. Lett., 256(4-5):474-482, 1996.

[6] D. Boda, J. C. Winkelmann, J. Liszi, and I. Szalai. Vapour-liquid equilibrium of Stockmayer fluids in applied field - Application of the NpTE plus test particle method and perturbation theory. Mol. Phys., 87(3):601-624, 1996.


1995     To top

[5] I. Szalai, J. Liszi, and D. Boda. The NVT plus test particle method for the determination of the vapor-liquid-equilibria of pure fluids. Chem. Phys. Lett., 246(3):214-220, 1995.

[4] D. Boda, J. Liszi, and I. Szalai. Preliminary communication - dielectric-constant of a Stockmayer fluid along the vapor-liquid coexistence curve. Mol. Phys., 85(3):429-434, 1995.

[3] D. Boda, J. Liszi, and I. Szalai. An extension of the NpT plus test particle method for the determination of the vapor-liquid-equilibria of pure fluids. Chem. Phys. Lett., 235(1-2):140-145, 1995.

[2] D. Boda, I. Szalai, and J. Liszi. Influence of static electric-field on the vapor-liquid coexistence of dipolar soft-sphere fluids. J. Chem. Society-faraday Transactions, 91(5):889-894, 1995.

[1] J. Liszi, D. Boda, and I. Szalai. Perturbation theoretical results of thermodynamic and dielectric studies on polar fluids. ACH-Models in Chem., 132(1-2):31-43, 1995.